87 research outputs found

    Artifacts in incomplete data tomography - with applications to photoacoustic tomography and sonar

    Full text link
    We develop a paradigm using microlocal analysis that allows one to characterize the visible and added singularities in a broad range of incomplete data tomography problems. We give precise characterizations for photo- and thermoacoustic tomography and Sonar, and provide artifact reduction strategies. In particular, our theorems show that it is better to arrange Sonar detectors so that the boundary of the set of detectors does not have corners and is smooth. To illustrate our results, we provide reconstructions from synthetic spherical mean data as well as from experimental photoacoustic data

    On Artifacts in Limited Data Spherical Radon Transform: Curved Observation Surface

    Get PDF
    In this article, we consider the limited data problem for spherical mean transform. We characterize the generation and strength of the artifacts in a reconstruction formula. In contrast to the third's author work [Ngu15b], the observation surface considered in this article is not flat. Our results are comparable to those obtained in [Ngu15b] for flat observation surface. For the two dimensional problem, we show that the artifacts are kk orders smoother than the original singularities, where kk is vanishing order of the smoothing function. Moreover, if the original singularity is conormal, then the artifacts are k+12k+\frac{1}{2} order smoother than the original singularity. We provide some numerical examples and discuss how the smoothing effects the artifacts visually. For three dimensional case, although the result is similar to that [Ngu15b], the proof is significantly different. We introduce a new idea of lifting the space

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.Comment: submitted to "Physics in Medicine and Biology
    • …
    corecore