50 research outputs found

    Beyond Physical Connections: Tree Models in Human Pose Estimation

    Full text link
    Simple tree models for articulated objects prevails in the last decade. However, it is also believed that these simple tree models are not capable of capturing large variations in many scenarios, such as human pose estimation. This paper attempts to address three questions: 1) are simple tree models sufficient? more specifically, 2) how to use tree models effectively in human pose estimation? and 3) how shall we use combined parts together with single parts efficiently? Assuming we have a set of single parts and combined parts, and the goal is to estimate a joint distribution of their locations. We surprisingly find that no latent variables are introduced in the Leeds Sport Dataset (LSP) during learning latent trees for deformable model, which aims at approximating the joint distributions of body part locations using minimal tree structure. This suggests one can straightforwardly use a mixed representation of single and combined parts to approximate their joint distribution in a simple tree model. As such, one only needs to build Visual Categories of the combined parts, and then perform inference on the learned latent tree. Our method outperformed the state of the art on the LSP, both in the scenarios when the training images are from the same dataset and from the PARSE dataset. Experiments on animal images from the VOC challenge further support our findings.Comment: CVPR 201

    Multi-Person Pose Estimation with Local Joint-to-Person Associations

    Full text link
    Despite of the recent success of neural networks for human pose estimation, current approaches are limited to pose estimation of a single person and cannot handle humans in groups or crowds. In this work, we propose a method that estimates the poses of multiple persons in an image in which a person can be occluded by another person or might be truncated. To this end, we consider multi-person pose estimation as a joint-to-person association problem. We construct a fully connected graph from a set of detected joint candidates in an image and resolve the joint-to-person association and outlier detection using integer linear programming. Since solving joint-to-person association jointly for all persons in an image is an NP-hard problem and even approximations are expensive, we solve the problem locally for each person. On the challenging MPII Human Pose Dataset for multiple persons, our approach achieves the accuracy of a state-of-the-art method, but it is 6,000 to 19,000 times faster.Comment: Accepted to European Conference on Computer Vision (ECCV) Workshops, Crowd Understanding, 201

    Articulated Pose Estimation Using Hierarchical Exemplar-Based Models

    Full text link
    Exemplar-based models have achieved great success on localizing the parts of semi-rigid objects. However, their efficacy on highly articulated objects such as humans is yet to be explored. Inspired by hierarchical object representation and recent application of Deep Convolutional Neural Networks (DCNNs) on human pose estimation, we propose a novel formulation that incorporates both hierarchical exemplar-based models and DCNNs in the spatial terms. Specifically, we obtain more expressive spatial models by assuming independence between exemplars at different levels in the hierarchy; we also obtain stronger spatial constraints by inferring the spatial relations between parts at the same level. As our method strikes a good balance between expressiveness and strength of spatial models, it is both effective and generalizable, achieving state-of-the-art results on different benchmarks: Leeds Sports Dataset and CUB-200-2011.Comment: 8 pages, 6 figure

    Towards Accurate Multi-person Pose Estimation in the Wild

    Full text link
    We propose a method for multi-person detection and 2-D pose estimation that achieves state-of-art results on the challenging COCO keypoints task. It is a simple, yet powerful, top-down approach consisting of two stages. In the first stage, we predict the location and scale of boxes which are likely to contain people; for this we use the Faster RCNN detector. In the second stage, we estimate the keypoints of the person potentially contained in each proposed bounding box. For each keypoint type we predict dense heatmaps and offsets using a fully convolutional ResNet. To combine these outputs we introduce a novel aggregation procedure to obtain highly localized keypoint predictions. We also use a novel form of keypoint-based Non-Maximum-Suppression (NMS), instead of the cruder box-level NMS, and a novel form of keypoint-based confidence score estimation, instead of box-level scoring. Trained on COCO data alone, our final system achieves average precision of 0.649 on the COCO test-dev set and the 0.643 test-standard sets, outperforming the winner of the 2016 COCO keypoints challenge and other recent state-of-art. Further, by using additional in-house labeled data we obtain an even higher average precision of 0.685 on the test-dev set and 0.673 on the test-standard set, more than 5% absolute improvement compared to the previous best performing method on the same dataset.Comment: Paper describing an improved version of the G-RMI entry to the 2016 COCO keypoints challenge (http://image-net.org/challenges/ilsvrc+coco2016). Camera ready version to appear in the Proceedings of CVPR 201

    Combining Local Appearance and Holistic View: Dual-Source Deep Neural Networks for Human Pose Estimation

    Full text link
    We propose a new learning-based method for estimating 2D human pose from a single image, using Dual-Source Deep Convolutional Neural Networks (DS-CNN). Recently, many methods have been developed to estimate human pose by using pose priors that are estimated from physiologically inspired graphical models or learned from a holistic perspective. In this paper, we propose to integrate both the local (body) part appearance and the holistic view of each local part for more accurate human pose estimation. Specifically, the proposed DS-CNN takes a set of image patches (category-independent object proposals for training and multi-scale sliding windows for testing) as the input and then learns the appearance of each local part by considering their holistic views in the full body. Using DS-CNN, we achieve both joint detection, which determines whether an image patch contains a body joint, and joint localization, which finds the exact location of the joint in the image patch. Finally, we develop an algorithm to combine these joint detection/localization results from all the image patches for estimating the human pose. The experimental results show the effectiveness of the proposed method by comparing to the state-of-the-art human-pose estimation methods based on pose priors that are estimated from physiologically inspired graphical models or learned from a holistic perspective.Comment: CVPR 201

    Discovering useful parts for pose estimation in sparsely annotated datasets

    Full text link
    Our work introduces a novel way to increase pose estimation accuracy by discovering parts from unannotated regions of training images. Discovered parts are used to generate more accurate appearance likelihoods for traditional part-based models like Pictorial Structures and its derivatives. Our experiments on images of a hawkmoth in flight show that our proposed approach significantly improves over existing work for this application, while also being more generally applicable. Our proposed approach localizes landmarks at least twice as accurately as a baseline based on a Mixture of Pictorial Structures (MPS) model. Our unique High-Resolution Moth Flight (HRMF) dataset is made publicly available with annotations.https://arxiv.org/abs/1605.00707Accepted manuscrip
    corecore