1,167 research outputs found

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    A Compact Formulation for the 2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the 2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the 2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method

    OMP-type Algorithm with Structured Sparsity Patterns for Multipath Radar Signals

    Get PDF
    A transmitted, unknown radar signal is observed at the receiver through more than one path in additive noise. The aim is to recover the waveform of the intercepted signal and to simultaneously estimate the direction of arrival (DOA). We propose an approach exploiting the parsimonious time-frequency representation of the signal by applying a new OMP-type algorithm for structured sparsity patterns. An important issue is the scalability of the proposed algorithm since high-dimensional models shall be used for radar signals. Monte-Carlo simulations for modulated signals illustrate the good performance of the method even for low signal-to-noise ratios and a gain of 20 dB for the DOA estimation compared to some elementary method

    Joint smoothed l0-norm DOA estimation algorithm for multiple measurement vectors in MIMO radar

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l0-norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l0-norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l1-norm minimization based methods, such as l1-SVD (singular value decomposition), RV (real-valued) l1-SVD and RV l1-SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance

    Bayesian Linear Regression with Cauchy Prior and Its Application in Sparse MIMO Radar

    Full text link
    In this paper, a sparse signal recovery algorithm using Bayesian linear regression with Cauchy prior (BLRC) is proposed. Utilizing an approximate expectation maximization(AEM) scheme, a systematic hyper-parameter updating strategy is developed to make BLRC practical in highly dynamic scenarios. Remarkably, with a more compact latent space, BLRC not only possesses essential features of the well-known sparse Bayesian learning (SBL) and iterative reweighted l2 (IR-l2) algorithms but also outperforms them. Using sparse array (SPA) and coprime array (CPA), numerical analyses are first performed to show the superior performance of BLRC under various noise levels, array sizes, and sparsity levels. Applications of BLRC to sparse multiple-input and multiple-output (MIMO) radar array signal processing are then carried out to show that the proposed BLRC can efficiently produce high-resolution images of the targets.Comment: 22 page
    corecore