60,857 research outputs found

    Extension of the single-event microkinetic model to alkyl substituted monoaromatics hydrogenation on a Pt catalyst

    Get PDF
    The Single-Event Micro Kinetic (SEMK) methodology, which had been successfully applied to benzene hydrogenation on a Pt catalyst, has now been extended toward substituted monoaromatics, that is, toluene and o-xylene. The single event concept Combined with thermodynamic constraints. allowed to significantly reduce the number of adjustable parameters. In addition to the number of unsaturated nearest neighbor carbon atoms, H-atom addition rate and equilibrium coefficients were assumed to depend on the carbon atom type, that is, secondary or tertiary. This leads to three additional :reaction families compared to benzene hydrogenation: Gas. phase toluene and o-xylene hydrogenation experiments were performed on 0.5 wt % Pt/ZSM-22 in a temperature range from 423 to 498 K, a total pressure range from 1 to 3 MPa, H-2 inlet partial pressures between 100 and 600 kPa and aromatic inlet partial pressures between 10 and 60 kPa. A simultaneous regression of the :SEMK,Model to an experimental data set consisting of 39 toluene and 37 o-xylene hydrogenation experiments resulted in activation energies of H additions to tertiary:carbon:atoms:that are 10.5 kJ mol(-1) higher than to secondary carbon atoms. This can be related to the steric hindrance experienced during H addition to a carbon atom bearing a substituent. The presence of a substituent on the aromatic king was found not to affect the Chemisorption enthalpies. The reaction path analysis has been carried out via differential contribution analysis and identified that the hydrogenation first, occurs at secondary carbon atoms, prior to the hydrogenation of the tertiary carbon atoms in the hydrogenation Sequence. This is in line with the distribution of hydrocarbon species on the catalyst surfac

    Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Get PDF
    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)

    Cross-linking of Polystyrene by Friedel–Crafts Chemistry to Improve Thermal Stability

    Get PDF
    Copolymers which contain either alcohol or chloride functionalized polystyrene units have been prepared and they participate in Friedel–Crafts chemistry to give cross-linked polymers by the evolution of either hydrogen chloride or water. Proof of cross-linking comes from the identification of the evolved gas, the insolubility of the product, and the thermal resistance of the newly formed polymer. The onset temperature for the degradation is raised by about 100°C relative to that of polystyrene and the fraction which is not volatile at 800°C ranges from 10% for the alcohol copolymers to 20% for the chloride copolymers

    Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics

    Get PDF
    The direct transformation of CO2 into high-value-added hydrocarbons (i.e., olefins and aromatics) has the potential to make a decisive impact in our society. However, despite the efforts of the scientific community, no direct synthetic route exists today to synthesize olefins and aromatics from CO2 with high productivities and low undesired CO selectivity. Herein, we report the combination of a series of catalysts comprising potassium superoxide doped iron oxide and a highly acidic zeolite (ZSM-5 and MOR) that directly convert CO2 to either light olefins (in MOR) or aromatics (in ZSM-5) with high space–time yields (STYC2-C4= = 11.4 mmol·g–1·h–1; STYAROM = 9.2 mmol·g–1·h–1) at CO selectivities as low as 12.8% and a CO2 conversion of 49.8% (reaction conditions: T = 375 °C, P = 30 bar, H2/CO2 = 3, and 5000 mL·g–1·h–1). Comprehensive solid-state nuclear magnetic resonance characterization of the zeolite component reveals that the key for the low CO selectivity is the formation of surface formate species on the zeolite framework. The remarkable difference in selectivity between the two zeolites is further rationalized by first-principles simulations, which show a difference in reactivity for crucial carbenium ion intermediates in MOR and ZSM-5

    Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry.

    Get PDF
    This paper provides experimental evidence for the chemical structures of aliphatically substituted and bridged polycyclic aromatic hydrocarbon (PAH) species in gas-physe combustion environments. The identification of these single- and multicore aromatic species, which have been hypothesized to be important in PAH growth and soot nucleation, was made possible through a combination of sampling gaseous constituents from an atmospheric pressure inverse coflow diffusion flame of ethylene and high-resolution tandem mass spectrometry (MS-MS). In these experiments, the flame-sampled components were ionized using a continuous VUV lamp at 10.0 eV and the ions were subsequently fragmented through collisions with Ar atoms in a collision-induced dissociation (CID) process. The resulting fragment ions, which were separated using a reflectron time-of-flight mass spectrometer, were used to extract structural information about the sampled aromatic compounds. The high-resolution mass spectra revealed the presence of alkylated single-core aromatic compounds and the fragment ions that were observed correspond to the loss of saturated and unsaturated units containing up to a total of 6 carbon atoms. Furthermore, the aromatic structures that form the foundational building blocks of the larger PAHs were identified to be smaller single-ring and pericondensed aromatic species with repetitive structural features. For demonstrative purposes, details are provided for the CID of molecular ions at masses 202 and 434. Insights into the role of the aliphatically substituted and bridged aromatics in the reaction network of PAH growth chemistry were obtained from spatially resolved measurements of the flame. The experimental results are consistent with a growth mechanism in which alkylated aromatics are oxidized to form pericondensed ring structures or react and recombine with other aromatics to form larger, potentially three-dimensional, aliphatically bridged multicore aromatic hydrocarbons

    Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong

    Get PDF
    Vehicular emissions are the major sources of a number of air pollutants including nonmethane hydrocarbons (NMHCs) in urban area. The emission composition and emission factors of NMHCs from vehicles are currently lacking in Hong Kong. In this study, speciation and emission factors of NMHCs emitted from gasoline-fuelled private cars and liquefied petroleum gas (LPG)-fuelled taxis at different driving speeds were constructed using a chassis dynamometer. Large variations in the contributions of individual NMHC species to total emission were observed for different private cars at different driving speeds. The variations of individual NMHC emissions were relatively smaller for taxis due to their relatively homogeneous year of manufacture and mileages. Incomplete combustion products like ethane, ethene and propene were the major component of both types of vehicles, while unburned fuel component was also abundant in the exhausts of private cars and taxis (i.e. i-pentane and toluene for private car, and propane and butanes for taxi). Emission factors of major NMHCs emitted from private cars and taxis were estimated. High emission factors of ethane, n-butane, i/n-pentanes, methylpentanes, trimethylpentanes, ethene, propene, i-butene, benzene, toluene and xylenes were found for private cars, whereas propane and i/n-butanes had the highest values for taxis. By evaluating the effect of vehicular emissions on the ozone formation potential (OFP), it was found that the contributions of olefinic and aromatic hydrocarbons to OFP were higher than that from paraffinic hydrocarbons for private car, whereas the contributions of propane and i/n-butanes were the highest for taxis. The total OFP value was higher at lower speeds (≤50 km h-1) for private cars while a minimum value at driving speed of 100 km h-1 was found for taxis. At the steady driving speeds, the total contribution of NMHCs emitted from LPG-fuelled taxis to the OFP was much lower than that from gasoline-fuelled private cars. However, at idling state, the contribution of NMHCs from LPG-fuelled vehicles to OFP was comparable to that from gasoline-fuelled vehicles. The findings obtained in this study can be used to mitigate the air pollution caused by vehicles in highly dense urban areas. © 2011 Elsevier Ltd

    Characterization of carbon monoxide, methane and nonmethane hydrocarbons in emerging cities of Saudi Arabia and Pakistan and in Singapore

    Get PDF
    We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (kOH) because of their great abundance and their relatively fast reaction rates with OH
    corecore