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ZONE 
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ABSTRACT 
Laboratory batch microcosm experiments were conducted to quantify the impact of soil organic matter 
(SOM) on the sorption and phase distribution of 20% ethanol-blended gasoline (E20) in the vadose 
zone. SOM was found to increase the sorption of all E20 gasoline compounds, thereby altering their 
mass distribution between the vadose zone phases. This impact, quantified by the sorption coefficient 
(Kd) of E20 gasoline compounds, increased with decreasing hydrophobicity, hence affected the 
aromatics to a greater extent of 7 times than the cycloalkanes (4 times) and the alkanes (2 times). 
However, when compared with unblended gasoline, the ethanol in E20 generally reduced the sorptive 
capability of SOM for gasoline compounds by a maximum of 76% for the cycloalkanes, 73% for the 
aromatics and 60% for the alkanes.Therefore, the full sorptive capability of SOM for gasoline 
compounds is unlikely to be realized for E20 gasoline compounds.  
 
KEYWORDS: Soil organic matter; Ethanol-blended gasoline; Sorption; Phase distribution; Vadose 
zone  

 
INTRODUCTION 
Ethanol is largely used in the transport sector as a fuel oxygenate, and its usage is likely to increase as new 
legislations requiring more biofuels come into effect (Powers et al., 2001). Ethanol is been used as a fuel 
oxygenate because it addresses air quality objectives without seriously deteriorating groundwater quality 
compared to methyl tertiary butyl ether (Beller et al., 2001; Dakhel et al., 2003). Studies on the impact of 
ethanol on gasoline compounds, especially with 10 and 20% ethanol blends, have shown that ethanol affects the 
infiltration, distribution, sorption and biodegradation of gasoline compounds (Powers and McDowell, 2001; 
Adam et al., 2002; McDowell and Powers, 2003; Mackay et al., 2006; Österreicher-Cunha et al., 2007; 
Lawrence et al., 2009; Österreicher-Cunha et al., 2009). As a hydrophilic compound, ethanol partitions almost 
instantly and totally into the aqueous phase, thereby increasing the solubility of gasoline in water, as well as 
reducing surface and interfacial tensions. Consequently, these processes alter the overall interactions between 
gasoline, soil water and soil particles. Although mounting evidence have shown that hydrophobic organic 
compounds, like gasoline compounds, have high octanol-water partition coefficient and will tend to be retained 
by soil organic matter (SOM) (Marchetti et al., 1999; Weber et al., 2001; Chiou, 2002; Celis et al., 2006; Chen 
et al., 2007; Joo et al., 2008; Liu et al., 2008; Wang et al., 2008a; Guo et al., 2010), it is still unclear how SOM 
will impact the sorption and phase distribution of a complex mixture like 20% ethanol-blended gasoline in the 
vadose zone. 
 
Sorption by soils is a fundamental process controlling the fate of less polar and non-polar organic contaminants 
in the subsurface environment (Huang et al., 2003). Soils in the natural environment consist of an inorganic 
component (soil minerals) and an organic component (SOM). These components affect the sorption of organic 
contaminants differently (Joo et al., 2008; Liu et al., 2008). Generally, the sorption of non-polar organic 
contaminants by natural soil often correlates well with the content of SOM (Huang and Weber, 1997; Chiou, 
2002; Celis et al., 2006; Liu et al., 2008; Li et al., 2009; Shi et al., 2010). According to Shi et al. (2010), the 
removal of SOM from a soil decreased sorption by approximately 86% for non-polar 1,3,5-trichlorobenzene 
(TCB), but only by 34-54% for highly polar 1,3,5-trinitrobenzene (TNB). Viewed from the physiology of SOM, 
it is rational to believe that the alkyl chains and aromatic rings contained in the SOM may invoke various degree 
of sorption on different organic contaminants.  
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Although the reviewed sorption studies may have shed light on the contribution of SOM to the overall sorption 
of hydrophobic organic compounds (HOCs) by soils, the findings may not be applicable to gasoline and 
gasoline blends due to the single HOC generally used in those studies. Such single HOC lacks the 
intermolecular interactions that exists amongst gasoline compounds (Lawrence et al., 2009), and has been found 
to result in different shapes of concentration profile and overestimation of vapour concentration (Karapanagioti 
et al., 2004). Gasoline is a complex mixture of volatile and semi-volatile hydrocarbons, predominantly 
composed of paraffins, olefins, naphthenes and aromatics (Speight, 2002). Thus, for a reasonable conclusion to 
be made about the behaviour of gasoline, it must be composed of the different hydrocarbon types (Speight, 
2002). More so, the addition of oxygenate such as ethanol, which is completely miscible in water, to gasoline 
will further impact the characteristics of the gasoline as well as the intermolecular interactions amongst the 
gasoline compounds.  
 
A good understanding of the phase distribution of ethanol-blended gasoline released into the vadose zone would 
provide a significant insight on groundwater contamination potential and in determining which tools are viable 
options regarding site characterization and remediation. Once introduced into the vadose zone, ethanol-blended 
gasoline is expected to gradually partition into the soil solids, soil water, soil air and nonaqueous phase liquid. 
Such distribution between phases will depend on the physicochemical properties of the ethanol-blended gasoline 
and the characteristics of the geologic media (Yu, 1995), and can be represented by empirical relationships 
referred to as partition coefficients (Huling and Weaver, 1991). One of the characteristics of the geologic media 
that could affect phase distribution is SOM. To the best of our knowledge, no work has addressed the impact of 
SOM on the phase distribution of either single or mixed gasoline compounds in the vadose zone.  
 
In this study, a number of laboratory batch experiments were performed to investigate the impact of SOM on the 
sorption and phase distribution of E20 gasoline compounds in the vadose zone. The porous media used 
consisted of uncontaminated sand mixed with 0 - 5% SOM. Contamination involved a vapour phase injection of 
synthetic gasoline blended with 0 and 20% ethanol, referred to as E0 and E20 respectively, into the headspace of 
microcosms and allowing sorption to and phase distribution within the porous media. The data obtained 
indicated that the ethanol in E20 generally reduced the sorption capability of SOM for E20 gasoline compounds.  
 
Experimental 
Fuel composition 
The fuel used in this study was a synthetic gasoline blended with 20% ethanol, referred to as E20. The synthetic 
gasoline, referred to as E0, was prepared from six typical fuel compounds (Table 1). The six fuel compounds 
were all of high purity (>99.5%) and were purchased from Sigma-Aldrich chemical company, UK. These fuel 
compounds are typical constituents of petroleum fuel (Pasteris et al., 2002; Speight, 2002; Dakhel et al., 2003; 
Höhener et al., 2003; Christophersen et al., 2005) and represent the three major hydrocarbon groups in gasoline, 
namely alkanes or paraffins, cycloalkanes or naphthenes and aromatics. The ethanol (>99.5%) was purchased 
from Sigma-Aldrich chemical company, UK. 
 

Table 1 Ethanol-blended gasoline composition 
Gasoline 
compounds 

Formula Weight in 
mixture, % 

Volume, 
ml 

Vapour pressure 
at 20oC, Paa 

Density at 
25oC, g/mla 

Henry’s law 
constant, -c 

Pentane C5H12 9.6 15.3 57900 0.626 51.4 
Octane C8H18 25.8 36.7 1470 0.703 211 
MCP C6H12 19.5 26.0 17732b 0.75 14.7 
MCH C7H14 32.3 41.9 4930 0.77 17.5 
Benzene C6H6 3.2 3.7 9950 0.874 2.26E-01 
Toluene C7H8 3.2 11.1 2910 0.865 2.65E-01 
Gasoline oxygenate 
Ethanol C2H5OH - 0 - 20% 5950 0.789 2.94E-04 

MCP – Methylcyclopentane; MCH – Methylcyclohexane; a values obtained from Sigma Aldrich Material Safety 
Data Sheet; b value obtained from Pasteris et al. (2002) Supporting Information; c obtained from Yaws (2008) 
 
Description of the porous media 
A mixture of sand and peat the source of SOM was used as the porous media. The sand was obtained from 
Nottingham (UK) and contained approximately 0% SOM. The sand has a particle size distribution of coarse 
(20%), medium (53%), and fine (27%). According to the BS 1377-1 (1990) soil classification, the sand could be  
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classified as a fine-grained sandy soil. The Peat was also obtained from Nottingham (UK) and contained 
approximately 96% SOM in its dry state as determined by the “Loss on Ignition” (LOI) method (Sutherland, 
1998). The peat has a particle size distribution of 2 - 0.71 mm (26%) and <0.71 mm (74%). The sand and the 
peat were mixed to obtain porous media consisting of 0, 1, 3 and 5% SOM fraction by weight, referred to as 
0%fom, 1%fom, 3%fom and 5%fom, respectively. The SOM percentages were chosen because they are within the 
reported range of SOM fraction for typical soils (Sparks, 2003). Table 2 shows the changing properties of the 
porous media with changing SOM fraction.  
 

Table 2 Properties of porous media 
Porous 
media 

Porous media properties 
Porosity, 
- 

Surface 
area, m2/g 

Particle 
density, g/ml 

Dry bulk 
density, g/ml 

Total pore 
volume, cm3/g 

Volumetric water 
content at field 
capacity, % 

5%fom 0.54 1.91 2.1 0.97 6.20E-3 16 
3%fom 0.53 1.47 2.3 1.07 5.33E-3 14 
1%fom 0.52 1.04 2.4 1.17 4.47E-3 12 
0%fom 0.51 0.82 2.5 1.22 4.04E-3 11 

 
Batch microcosm experiments 
The batch microcosm experiments were performed with 60 ml glass vials (H*Ø = 140*27.5 mm) capped with 
24 mm screw caps with 3.2 mm seal. The porous media used were sterilised by heating in an oven set at 160oC 
for approximately 16 h and then wetted with hot water of approximately 50oC to a volumetric water content of 
11%. The wetted porous media (65 g) were packed into the glass vials and compacted alike by tapping vials on 
the worktable until stable heights were obtained. Heights in vials were 80 mm for 0%fom, 84 mm for 1%fom, 92 
mm for 3%fom and 100 mm for 5%fom, leaving headspaces of 60, 56, 48, and 40 mm, respectively, for vapour 
phase sampling. The porosities of the porous media were 0.45, 0.46, 0.48 and 0.48 for 0%fom, 1%fom, 3%fom and 
5%fom, respectively. The 0%fom experiment was the control experiment. All experiments were performed in 
triplicates. Before contamination with either E0 or E20 vapours, the microcosms were stored in a Thermostatic 
bath/circulator (L*W*H = 52*32*21.5 cm) set at 25oC for 24 h. Then 10 ml of air were extracted from the 
microcosms and 10 ml headspace of a glass vial containing E0 or E20 at 25oC were injected using a stainless 
steel hypodermic needle (L*Ø = 50*0.63 mm) fitted to a 10 ml gas-tight syringe. The decrease in concentrations 
of the gasoline compounds in the microcosm headspaces were monitored for 15 days. The microcosms were 
maintained at 25oC in the Thermostatic bath/circulator throughout the experimental period. The changes in 
sorption and phase distribution of E20 gasoline compounds due to SOM was obtained by comparing data from 
the SOM-containing porous media (1%fom, 3%fom and 5%fom) with the SOM-free porous medium (0%fom). The 
impact of ethanol on the sorption capability of SOM was obtained by comparing the increase in sorption 
between 0%fom and 5%fom porous media for E0 and E20 gasoline compounds.    
 
Vapour phase analysis 
The concentrations of gasoline compounds in the headspace of the microcosms were analysed by injecting 40µl 
of vapour samples into a HR-5300 mega series Gas Chromatography (Carlo Erba, UK) equipped with a 
ChrompackPoraploto column (27.5m * 0.32mm * 10µm) and Flame Ionization Detector (FID). The injector was 
heated to 200oC, and the column temperature held at 200oC for 16 min. The carrier gas was helium at a flow rate 
of 4 ml/min. 
 
Estimation of mass of gasoline compounds in soil air, water and solid 
The mass of gasoline compounds in the soil air (Ma), water (Mw) and solids (Ms) were estimated from the total 
mass of gasoline compound injected into the microcosm (Mt), mass of gasoline compound lost via sampling 
(ML), concentration of gasoline compound measured at the headspace of microcosm (Ca), volumes of air (Va) 
and water (Vw) in the microcosm and dimensionless Henry’s law constant (H) as follows:   
 

aaa *VCM =        (1) 

 

w
a

w *V
H

C
M =        (2) 
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Lwats MMMMM −−−=      (3) 

 
Estimation of sorption coefficient and retardation factor of gasoline compounds 
The sorption coefficient (Kd) was estimated as the ratio of the concentration of gasoline compound in the soil 
solids (Cs) to the concentration in the soil water (Cw): 

w

s
d C

C
K =        (4) 

 
The retardation factor (R) or the degree of retardation of the migration of gasoline compounds as a result of 
sorption was estimated from (Kd) and the bulk density (ρb) and porosity (n) of the vadose zone as (Site, 2001):  

 

d
b K

n

ρ
R 







+=1       (5) 

 
RESULTS AND DISCUSSION 
Impact of SOM on the sorption and phase distribution of E20 gasoline compounds 
E20 gasoline compounds sorption by porous media 
The headspace concentrations of E20 gasoline compounds in microcosms with time as a function of SOM 
fraction of porous media is presented in Figure 1. Octane was not included in Figure 1 due to poor detection by 
the GC-FID used for the headspace vapour sample analysis. All E20 gasoline compounds persisted at detectable 
concentrations at the headspace throughout the 15 days duration of the experiment except for ethanol that 
decreased continuously with time and completely disappeared from the headspace on Day 13. The decrease in 
the headspace concentration of all E20 gasoline compounds followed the first order rate law and indicates 
sorption to the porous media since biodegradation is not expected to occur due to the cautious sterilization of the 
porous media. Generally, two phases of sorption were observed. A rapid sorption during the first three days after 
contamination followed by a slower sorption from Day 6 to Day 13 for the alcohol, to Day 15 for the alkane and 
to when equilibrium were reached for the cycloalkanes and aromatics. The two phases of sorption observed in 
the present study is a common observation in sorption studies (Allen-King et al., 1994; Gaston and Locke, 1995; 
Höhener et al., 2003). The slower sorption has been interpreted as intraparticle diffusion-limited approach of 
equilibrium between soil phases (Site, 2001; Höhener et al., 2003).  
 
The increase in the SOM fraction of porous media resulted in rapid and greater sorption of all E20 gasoline 
compounds except for ethanol that had similar sorption for all SOM fractions. Ethanol has low octanol-water 
partition coefficient (Kow) of 0.5 compared to the gasoline compounds that have Kow ranging from 134.9 to 
7585.8 (Yaws, 2008), hence partitioned readily to soil water and was not affected by SOM. Since SOM has high 
specific surface area and porosity that can promote sorption (Allen-King et al., 2002), the increasing sorption of 
all gasoline compounds by porous media with increasing SOM fraction could be due to the increase in the 
surface area and porosity of the porous media as listed in Table 2. Although the impact of SOM on the sorption 
of gasoline compounds varied with time and compounds, it was generally more on Day 1 and affected the 
aromatics to a greater extent (76 – 89%) than the cycloalkanes (46 – 59%) and the alkane (29%). However, from 
Day 1 to Day 15, a huge reduction in SOM impact was observed for the aromatics (10 – 19%) whereas 
negligible reductions were observed for the cycloalkanes (0 – 2%) and the alkane (≈0%). This implies that 
bonding forces between the aromatics and the SOM are weaker than those between either the cycloalkanes or 
alkanes and the SOM. Thus, any aromatics retained by SOM are more likely to undergo faster leaching with 
time than would any cycloalkanes or alkanes. Overall, the data indicate that SOM promoted the sorption of all 
gasoline compounds but had no significant impact on the sorption of ethanol. Among the gasoline compounds, 
the cycloalkanes and the alkanes are more likely to be tightly retained by SOM than would the aromatics by 
SOM.     
 
 
 
 
 
 



5 
 

Ejikeme Ugwoha and John M. Andresen: Continental J. Water, Air and Soil Pollution 3 (2): 1 – 12, 2012 
 
 

 
Figure 1 Headspace concentrations of E20 gasoline compounds with time as a function of SOM fraction of 
porous media  
 
E20 gasoline compounds soil-water interaction in the vadose zone 
The distribution of a contaminant between the soil solids and water, commonly referred to as sorption, results 
from its relative affinity for each phase or its sorption coefficient (Kd) (Weber et al., 1991). The Kd of each 
gasoline compound was calculated on a daily basis using Equation [4] and the average Kd used as the 
representative Kd. The changes in the average Kd values for all gasoline compounds with changing SOM 
fraction (fom) of porous media are shown in Figure 2. The Kd of all E20 gasoline compounds increased with 
increasing fom, suggesting an increase in the adsorption of gasoline compounds to the soil solids or a reduction in 
the concentrations of gasoline compounds in the soil water. This impact was greatest for the aromatics, with Kd 
increased by a maximum of 7 times, compared with the cycloalkanes (4 times) and the alkanes (2 times), for 0 
to 5% increase in fom. As reported by Site (2001), the Kd values for benzene, toluene and xylenes were increased 
with increasing surface area (SA) of adsorbents. The Kd value of pyrene was also found to increase with 
increasing SA of adsorbents (Wang et al., 2008b). Therefore, one explanation for the observed increase in Kd 
with increasing fom of porous media could be due to the increase in the surface area of the porous media (see 
Table 2). Another explanation could be due to the reduction in available soil water in the porous media with 
increasing fom. Since the porous media were wetted to the same volumetric water content, and SOM has a high 
water absorption capacity (Page, 1982), it is likely that lesser water were available for the gasoline compounds 
to dissolve in with increasing fom of porous media. Shoemaker et al. (1990) have reported that sorption under dry 
or low moisture conditions would be substantially greater than sorption under saturated conditions. As listed in 
Table 2, the volumetric water contents of the porous media at field capacity were 11% and 16% for 0%fom and 
5%fom, respectively. Since the porous media were wetted to a volumetric water content of 11%, it therefore 
implies that the 0%fom was at saturated condition hence the lower Kd obtained from it as compared to those from  
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5%fom. Despite the difference in contaminant mixtures, the Kd values obtained for 0%fom in the present study, 
0.4 l/kg for benzene and 0.5 l/kg for toluene, were qualitatively and quantitatively comparable to those reported 
for sand in the literature. For example Joo et al. (2008) reported Kd values of 0.2 l/kg for benzene and 0.3 l/kg 
for toluene, and Christophersen et al. (2005) reported Kd values of 0.02 – 0.3 l/kg for benzene and 0.04 – 0.5 
l/kg for toluene. Similar observations on the direct relationship between Kd and SOM have been reported for a 
wide range of organic contaminants and sorbents (Celis et al., 2006; Chen et al., 2007; Shi et al., 2010). 
Therefore, the data suggest that SOM increased the adsorption of gasoline compounds to the soil solids but 
reduced their dissolution in the soil water. This impact increased with decreasing hydrophobicity of gasoline 
compounds. 
 

 
Figure 2 Sorption coefficient (Kd) of E20 gasoline compounds as a function of SOM fraction (fom) of porous 
media 
 
Retardation of the migration of E20 gasoline compounds in the vadose zone  
Figure 3 shows the changes in the retardation factor (R) values for E20 gasoline compounds with varying SOM 
fraction (fom) of porous media. R was estimated from Equation [5] and represents the degree of retardation of the 
migration of the gasoline compounds due to sorption on soil solids. The figure shows that SOM promoted the R 
of all E20 gasoline compounds, implying a reduction in the migration of E20 gasoline compounds in the vadose 
zone. This effect increased with decreasing solubility of gasoline compounds hence was in the order: 
cycloalkanes (0 – 46.8)>alkane (0 – 25.7)>aromatics (0 – 6.5). The R of gasoline compounds with similar 
solubility, such as pentane and MCP (0.04 g/l) (Yaws, 2008), were similarly impacted. Generally, SOM 
promoted the R of E20 gasoline compounds in a similar way as it promoted their Kd values, probably due to the 
dependence of R on Kd as can be seen in Equation [5]. By substituting Joo et al. (2008) Kd values of 0.2 l/kg for 
benzene and 0.3 l/kg for toluene into Equation [5] for 0%fom porous medium which is similar in SOM fraction to 
the aquifer sand used by the researchers, R values of 1.61 for benzene and 1.91 for toluene were obtained. These 
values, though obtained from a contaminant mixture comprising only aromatics, were found qualitatively and 
quantitatively similar to the R values of 2.29 for benzene and 2.53 for toluene obtained in the present study 
which used a contaminant mixture consisting of alkanes, cycloalkanes, aromatics and alcohol. Also, our benzene 
and toluene R values in 0%fom were in good agreement with the R values of 1.24 for benzene and 1.93 for 
toluene in sand reported by Höhener et al. (2006). However, our R values were found to be only qualitatively 
similar to those reported by Myrand et al. (1992), 117.2 for benzene and 734 for toluene, which used clay as the 
porous medium. The vast difference between the R values from different soils, as compared to the R values 
from different contaminant mixture, suggest that R of gasoline compounds could be highly site specific and that 
the types and properties of soils are likely to have a greater influence on the R of gasoline compounds than the 
composition of contaminants.  
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Figure 3 Retardation factors (R) of E20 gasoline compounds as a function of SOM fraction of porous media 
 
Distribution of E20 gasoline compounds amongst vadose zone phases 
The mass distribution of E20 representative gasoline compounds to the soil air, solids and water as a function of 
SOM fraction (fom) of porous media is presented in Table 3. The masses were estimated by fitting measured data 
into Equations [1] to [3]. The mass distribution of gasoline compounds to the vadose zone phases changed with 
time. While the mass of gasoline compounds on the soil solids increased with time, the mass in the soil air and 
water decreased with time, for all porous media tested. The increase in fom of porous media increased mass 
distribution to the soil solids and caused a rapid uptake of all gasoline compounds 4 h after contamination on 
Day 1. This effect was greater on the aromatics representative (with increase in adsorption to soil solids ranging 
from 6 to 55% for 1 to 5% increase in fom of porous media) than on the cycloalkanes representative (8 to 35%) 
and alkanes representative (5 to 26%). Water solubility seemed to be an important property determining the 
impact of SOM on the adsorption of gasoline compounds to the soil solids. The mass distribution in 0%fom 
porous medium on Day 1 shows that the aromatics had higher mass in the soil water compared to the 
cycloalkanes and the alkanes. It is then likely that the addition of SOM to porous media affected the available 
water in the experimental system more than it affected the available air due to the high water absorption 
capability of SOM (Page, 1982). Consequently, most of the dissolved masses were adsorbed to the soil solids. 
The adsorption of some of the masses in the soil air may have been prompted by the increase in the surface area 
of porous media with increasing fom as shown in Table 2 (Site, 2001; Wang et al., 2008b). In contrast to impact 
on Day 1, SOM impacted a general lower mass distribution to the soil solids for all gasoline compounds on Day 
15, suggesting that the sorption influence of SOM is likely to be predominant on Day 1 of spills. More so, the 
mass distribution to the soil solids of the cycloalkanes was impacted to a greater extent (4 – 23%) than those of 
the alkanes (3 – 17%) and aromatics (2 – 11%), suggesting that the degree of impact of SOM on the mass 
distribution of gasoline compounds could vary with time. Therefore, the data show that SOM could enhance the 
mass distribution of E20 gasoline compounds to the soil solids in the vadose zone. The degree of the impact is 
likely to vary with time among the gasoline compounds. The less hydrophobic compounds such as the aromatics 
are more likely to be impacted to a greater extent before equilibrium, while the more hydrophobic compounds 
such as the cycloalkanes could be impacted to a larger extent at equilibrium. Hence, this result offers an 
understanding into the mass distribution of E20 gasoline compounds to the vadose zone phases following a spill 
on soils with varying SOM contents.    
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Table 3 Mass distribution of E20 representative gasoline compounds in the vadose zone as a function of SOM 
fraction of porous media 
 

Day Pentane MCP Benzene 
 Air 

% 
Solid 
% 

Water 
% 

Air 
% 

Solid 
% 

Water 
% 

Air 
% 

Solid 
% 

Water 
% 

0%fom 
1 66.2 33.6 0.3 64.6 34.5 0.8 38.0 29.8 32.2 
8 42.8 56.7 0.2 43.0 56.0 0.6 14.9 72.4 12.6 
15 40.6 58.6 0.2 40.5 58.3 0.5 11.2 79.1 9.5 
1%fom 
1 61.5 38.3 0.2 56.9 42.3 0.8 34.2 35.9 29.9 
8 39.9 59.5 0.2 38.3 60.8 0.5 13.3 74.8 11.7 
15 37.2 62.0 0.1 36.2 62.7 0.5 10.1 80.8 8.8 
3%fom 
1 50.4 49.4 0.2 43.8 55.6 0.6 18.6 64.5 17.0 
8 36.7 62.8 0.2 29.5 69.8 0.4 10.2 80.4 9.3 
15 31.0 68.3 0.1 27.5 71.8 0.4 8.0 84.4 7.3 
5%fom 
1 40.4 59.5 0.2 30.0 69.6 0.5 7.8 84.5 7.7 
8 29.3 70.3 0.1 20.3 79.2 0.3 5.4 89.1 5.4 
15 24.0 75.4 0.1 18.6 80.8 0.3 5.1 89.8 5.1 

 
Impact of ethanol on SOM sorptive capability for gasoline compounds 
Figure 4 shows the impact of ethanol on the SOM-induced increase in Kd of gasoline compounds. The SOM-
induced increase in Kd was obtained by comparing the Kd of gasoline compounds in 0%fom and 5%fom porous 
media for unblended gasoline (E0) and E20. The presence of ethanol reduced the SOM-induced increase in Kd 
of E20 gasoline compounds, implying a reduction in the SOM sorptive capability for gasoline compounds. This 
impact of ethanol on the sorptive capability of SOM could be due to changes in conformation of the SOM 
matrix induced by changes in gasoline polarity resulting from the presence of ethanol (Brusseau et al., 1991; Ju 
and Young, 2005). Previous studies have shown that low polarity of SOM could lead to high sorption of 
contaminant and vice versa (Chefetz et al., 2000; Guo et al., 2010). Therefore, it is likely that the presence of 
ethanol increased the polarity of the SOM which resulted in the reduction of Kd. The change in gasoline polarity 
with 20% ethanol addition was expected since ethanol effect on gasoline has been reported to be significant for 
concentrations higher than 10% (Corseuil et al., 2004). Among the gasoline compounds, the cycloalkanes were 
impacted to a greater extent, with a maximum decrease in the SOM-induced increase in Kd of 46 and 76%, than 
the aromatics of 43 and 73% and the alkanes of 36 and 60%.This reduction in the SOM sorptive capability 
signifies reduction in the amount of gasoline compounds retained by the soil solids in the vadose zone. It also 
denotes increase in the amount of gasoline compounds in the mobile phases (water and air) which in turn 
represents increase in groundwater contamination potential (Yu, 1995).  
 

 
Figure 4 Impact of ethanol on the SOM sorptive capability for gasoline compounds 

 



9 
 

Ejikeme Ugwoha and John M. Andresen: Continental J. Water, Air and Soil Pollution 3 (2): 1 – 12, 2012 
 
 
CONCLUSIONS 
The results of this study indicate that the addition of SOM to sand changed the conformation of the sand to 
higher porosity and greater surface area porous medium, hence increased the sorption of all E20 gasoline 
compounds and altered their mass distribution between the vadose zone phases. This impact, quantified by the 
sorption coefficient (Kd) of E20 gasoline compounds, increased with decreasing hydrophobicity, hence affected 
the aromatics to a greater extent than the cycloalkanes and the alkanes. By increasing the SOM fraction of sand 
from 0 to 5%, the Kd of E20 gasoline compounds increased by about 7 times for the aromatics, 4 times for 
cycloalkanes and 2 times for the alkanes. However, when compared with unblended gasoline, the ethanol in E20 
generally reduced the sorptive capability of SOM for gasoline compounds by a maximum of 76% for the 
cycloalkanes, 73% for the aromatics and 60% for the alkanes. Therefore, the full sorptive capability of SOM for 
gasoline compounds is unlikely to be realized for E20 gasoline compounds. This would mean greater 
groundwater contamination with E20 gasoline compounds than with E0 gasoline compounds even in soils with 
high SOM content. This behaviour of E20 is of great significance in determining its fate in soils with varying 
SOM fractions. 
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