16,766 research outputs found

    Shallow Circuits with High-Powered Inputs

    Get PDF
    A polynomial identity testing algorithm must determine whether an input polynomial (given for instance by an arithmetic circuit) is identically equal to 0. In this paper, we show that a deterministic black-box identity testing algorithm for (high-degree) univariate polynomials would imply a lower bound on the arithmetic complexity of the permanent. The lower bounds that are known to follow from derandomization of (low-degree) multivariate identity testing are weaker. To obtain our lower bound it would be sufficient to derandomize identity testing for polynomials of a very specific norm: sums of products of sparse polynomials with sparse coefficients. This observation leads to new versions of the Shub-Smale tau-conjecture on integer roots of univariate polynomials. In particular, we show that a lower bound for the permanent would follow if one could give a good enough bound on the number of real roots of sums of products of sparse polynomials (Descartes' rule of signs gives such a bound for sparse polynomials and products thereof). In this third version of our paper we show that the same lower bound would follow even if one could only prove a slightly superpolynomial upper bound on the number of real roots. This is a consequence of a new result on reduction to depth 4 for arithmetic circuits which we establish in a companion paper. We also show that an even weaker bound on the number of real roots would suffice to obtain a lower bound on the size of depth 4 circuits computing the permanent.Comment: A few typos correcte

    A Logical Characterization of Constant-Depth Circuits over the Reals

    Full text link
    In this paper we give an Immerman's Theorem for real-valued computation. We define circuits operating over real numbers and show that families of such circuits of polynomial size and constant depth decide exactly those sets of vectors of reals that can be defined in first-order logic on R-structures in the sense of Cucker and Meer. Our characterization holds both non-uniformily as well as for many natural uniformity conditions.Comment: 24 pages, submitted to WoLLIC 202

    Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

    Full text link
    In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree nn in n2n^2 variables such that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(loglogn)n^{\Omega(\log \log n)}. Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed superpolynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed exponential lower bounds. The main ingredient in our proof is a new complexity measure of {\it bounded support} shifted partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth 4 circuits where all the monomials computed at the bottom layer have {\it bounded support} (but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et al [GKKS13, KSS13]. This new lower bound combined with a careful "random restriction" procedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded support) gives us our final result

    Arithmetic circuits: the chasm at depth four gets wider

    Get PDF
    In their paper on the "chasm at depth four", Agrawal and Vinay have shown that polynomials in m variables of degree O(m) which admit arithmetic circuits of size 2^o(m) also admit arithmetic circuits of depth four and size 2^o(m). This theorem shows that for problems such as arithmetic circuit lower bounds or black-box derandomization of identity testing, the case of depth four circuits is in a certain sense the general case. In this paper we show that smaller depth four circuits can be obtained if we start from polynomial size arithmetic circuits. For instance, we show that if the permanent of n*n matrices has circuits of size polynomial in n, then it also has depth 4 circuits of size n^O(sqrt(n)*log(n)). Our depth four circuits use integer constants of polynomial size. These results have potential applications to lower bounds and deterministic identity testing, in particular for sums of products of sparse univariate polynomials. We also give an application to boolean circuit complexity, and a simple (but suboptimal) reduction to polylogarithmic depth for arithmetic circuits of polynomial size and polynomially bounded degree

    Balancing Bounded Treewidth Circuits

    Full text link
    Algorithmic tools for graphs of small treewidth are used to address questions in complexity theory. For both arithmetic and Boolean circuits, it is shown that any circuit of size nO(1)n^{O(1)} and treewidth O(login)O(\log^i n) can be simulated by a circuit of width O(logi+1n)O(\log^{i+1} n) and size ncn^c, where c=O(1)c = O(1), if i=0i=0, and c=O(loglogn)c=O(\log \log n) otherwise. For our main construction, we prove that multiplicatively disjoint arithmetic circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in arithmetic formulas of depth O(k2logn)O(k^2\log n). From this we derive the analogous statement for syntactically multilinear arithmetic circuits, which strengthens a theorem of Mahajan and Rao. As another application, we derive that constant width arithmetic circuits of size nO(1)n^{O(1)} can be balanced to depth O(logn)O(\log n), provided certain restrictions are made on the use of iterated multiplication. Also from our main construction, we derive that Boolean bounded fan-in circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in formulas of depth O(k2logn)O(k^2\log n). This strengthens in the non-uniform setting the known inclusion that SC0NC1SC^0 \subseteq NC^1. Finally, we apply our construction to show that {\sc reachability} for directed graphs of bounded treewidth is in LogDCFLLogDCFL
    corecore