8 research outputs found

    Ethical challenges in argumentation and dialogue in a healthcare context.

    Get PDF
    As the average age of the population increases, so too do the number of people living with chronic illnesses. With limited resources available, the development of dialogue-based e-health systems that provide justified general health advice offers a cost-effective solution to the management of chronic conditions. It is however imperative that such systems are responsible in their approach. We present in this paper two main challenges for the deployment of e-health systems, that have a particular relevance to dialogue and argumentation: collecting and handling health data, and trust. For both challenges, we look at specific issues therein, outlining their importance in general, and describing their relevance to dialogue and argumentation. Finally, we go on to propose six recommendations for handling these issues, towards addressing the main challenges themselves, that act both as general advice for dialogue and argumentation research in the e-health domain, and as a foundation for future work on this topic

    EQRbot: A chatbot delivering EQR argument-based explanations

    Get PDF
    Recent years have witnessed the rise of several new argumentation-based support systems, especially in the healthcare industry. In the medical sector, it is imperative that the exchange of information occurs in a clear and accurate way, and this has to be reflected in any employed virtual systems. Argument Schemes and their critical questions represent well-suited formal tools for modeling such information and exchanges since they provide detailed templates for explanations to be delivered. This paper details the EQR argument scheme and deploys it to generate explanations for patients' treatment advice using a chatbot (EQRbot). The EQR scheme (devised as a pattern of Explanation-Question-Response interactions between agents) comprises multiple premises that can be interrogated to disclose additional data. The resulting explanations, obtained as instances of the employed argumentation reasoning engine and the EQR template, will then feed the conversational agent that will exhaustively convey the requested information and answers to follow-on users' queries as personalized Telegram messages. Comparisons with a previous baseline and existing argumentation-based chatbots illustrate the improvements yielded by EQRbot against similar conversational agents

    An Empirical Evaluation of the Inferential Capacity of Defeasible Argumentation, Non-monotonic Fuzzy Reasoning and Expert Systems

    Get PDF
    Several non-monotonic formalisms exist in the field of Artificial Intelligence for reasoning under uncertainty. Many of these are deductive and knowledge-driven, and also employ procedural and semi-declarative techniques for inferential purposes. Nonetheless, limited work exist for the comparison across distinct techniques and in particular the examination of their inferential capacity. Thus, this paper focuses on a comparison of three knowledge-driven approaches employed for non-monotonic reasoning, namely expert systems, fuzzy reasoning and defeasible argumentation. A knowledge-representation and reasoning problem has been selected: modelling and assessing mental workload. This is an ill-defined construct, and its formalisation can be seen as a reasoning activity under uncertainty. An experimental work was performed by exploiting three deductive knowledge bases produced with the aid of experts in the field. These were coded into models by employing the selected techniques and were subsequently elicited with data gathered from humans. The inferences produced by these models were in turn analysed according to common metrics of evaluation in the field of mental workload, in specific validity and sensitivity. Findings suggest that the variance of the inferences of expert systems and fuzzy reasoning models was higher, highlighting poor stability. Contrarily, that of argument-based models was lower, showing a superior stability of its inferences across knowledge bases and under different system configurations. The originality of this research lies in the quantification of the impact of defeasible argumentation. It contributes to the field of logic and non-monotonic reasoning by situating defeasible argumentation among similar approaches of non-monotonic reasoning under uncertainty through a novel empirical comparison

    Argumentation-logic for creating and explaining medical hypotheses

    No full text
    <p>Objective: While EIRA has proved to be successful in the detection of anomalous patient responses to treatments in the Intensive Care Unit, it could not describe to clinicians the rationales behind the anomalous detections. The aim of this paper is to address this problem.</p> <p>Methods: Few attempts have been made in the past to build knowledge-based medical systems that possess both argumentation and explanation capabilities. Here we propose an approach based on Dung's seminal calculus of opposition.</p> <p>Results: We have developed a new tool, arguEIRA, which is an extension of the existing EIRA system. In this paper we extend EIRA by providing it with an argumentation-based justification system that formalizes and communicates to the clinicians the reasons why a patient response is anomalous.</p> <p>Conclusion: Our comparative evaluation of the EIRA system against the newly developed tool highlights the multiple benefits that the use of argumentation-logic can bring to the field of medical decision support and explanation.</p&gt

    Evaluating the Impact of Defeasible Argumentation as a Modelling Technique for Reasoning under Uncertainty

    Get PDF
    Limited work exists for the comparison across distinct knowledge-based approaches in Artificial Intelligence (AI) for non-monotonic reasoning, and in particular for the examination of their inferential and explanatory capacity. Non-monotonicity, or defeasibility, allows the retraction of a conclusion in the light of new information. It is a similar pattern to human reasoning, which draws conclusions in the absence of information, but allows them to be corrected once new pieces of evidence arise. Thus, this thesis focuses on a comparison of three approaches in AI for implementation of non-monotonic reasoning models of inference, namely: expert systems, fuzzy reasoning and defeasible argumentation. Three applications from the fields of decision-making in healthcare and knowledge representation and reasoning were selected from real-world contexts for evaluation: human mental workload modelling, computational trust modelling, and mortality occurrence modelling with biomarkers. The link between these applications comes from their presumptively non-monotonic nature. They present incomplete, ambiguous and retractable pieces of evidence. Hence, reasoning applied to them is likely suitable for being modelled by non-monotonic reasoning systems. An experiment was performed by exploiting six deductive knowledge bases produced with the aid of domain experts. These were coded into models built upon the selected reasoning approaches and were subsequently elicited with real-world data. The numerical inferences produced by these models were analysed according to common metrics of evaluation for each field of application. For the examination of explanatory capacity, properties such as understandability, extensibility, and post-hoc interpretability were meticulously described and qualitatively compared. Findings suggest that the variance of the inferences produced by expert systems and fuzzy reasoning models was higher, highlighting poor stability. In contrast, the variance of argument-based models was lower, showing a superior stability of its inferences across different system configurations. In addition, when compared in a context with large amounts of conflicting information, defeasible argumentation exhibited a stronger potential for conflict resolution, while presenting robust inferences. An in-depth discussion of the explanatory capacity showed how defeasible argumentation can lead to the construction of non-monotonic models with appealing properties of explainability, compared to those built with expert systems and fuzzy reasoning. The originality of this research lies in the quantification of the impact of defeasible argumentation. It illustrates the construction of an extensive number of non-monotonic reasoning models through a modular design. In addition, it exemplifies how these models can be exploited for performing non-monotonic reasoning and producing quantitative inferences in real-world applications. It contributes to the field of non-monotonic reasoning by situating defeasible argumentation among similar approaches through a novel empirical comparison
    corecore