8 research outputs found

    Multi-Sided Boundary Labeling

    Full text link
    In the Boundary Labeling problem, we are given a set of nn points, referred to as sites, inside an axis-parallel rectangle RR, and a set of nn pairwise disjoint rectangular labels that are attached to RR from the outside. The task is to connect the sites to the labels by non-intersecting rectilinear paths, so-called leaders, with at most one bend. In this paper, we study the Multi-Sided Boundary Labeling problem, with labels lying on at least two sides of the enclosing rectangle. We present a polynomial-time algorithm that computes a crossing-free leader layout if one exists. So far, such an algorithm has only been known for the cases in which labels lie on one side or on two opposite sides of RR (here a crossing-free solution always exists). The case where labels may lie on adjacent sides is more difficult. We present efficient algorithms for testing the existence of a crossing-free leader layout that labels all sites and also for maximizing the number of labeled sites in a crossing-free leader layout. For two-sided boundary labeling with adjacent sides, we further show how to minimize the total leader length in a crossing-free layout

    Visualization Algorithms for Maps and Diagrams

    Get PDF
    One of the most common visualization tools used by mankind are maps or diagrams. In this thesis we explore new algorithms for visualizing maps (road and argument maps). A map without any textual information or pictograms is often without use so we research also further into the field of labeling maps. In particular we consider the new challenges posed by interactive maps offered by mobile devices. We discuss new algorithmic approaches and experimentally evaluate them

    Automatic Label Placement in Maps and Figures: Models, Algorithms and Experiments

    Get PDF

    Area-Feature Boundary Labeling

    No full text
    Boundary labeling is a relatively new labeling method. It can be useful in automating the production of technical drawings and medical drawings, where it is common to explain certain parts of the drawing with text labels, arranged on its boundary so that other parts of the drawing are not obscured. In boundary labeling, we are given a rectangle R which encloses a set of n sites. Each site s is associated with an axis-parallel rectangular label ls. The labels must be placed in distinct positions on the boundary of R and they must be connected to their corresponding sites with polygonal lines, called leaders, so that the labels are pairwise disjoint and the leaders do not intersect each other. In this paper, we study a version of the boundary labeling problem where the sites can ‘float ’ within a polygonal region. We present a polynomial time algorithm, which runs in O(n 3) time and produces a labeling of minimum total leader length for labels of uniform size placed in fixed positions on the boundary of rectangle R

    Area-Feature Boundary Labeling

    No full text

    Area-Feature Boundary Labeling(1)

    No full text
    corecore