5 research outputs found

    Thermodynamics of porous media: non-linear flow processes

    Get PDF
    Numerical modelling of subsurface processes, such as geotechnical, geohydrological or geothermal applications requires a realistic description of fluid parameters in order to obtain plausible results. Particularly for gases, the properties of a fluid strongly depend on the primary variables of the simulated systems, which lead to non-linerarities in the governing equations. This thesis describes the development, evaluation and application of a numerical model for non-isothermal flow processes based on thermodynamic principles. Governing and constitutive equations of this model have been implemented into the open-source scientific FEM simulator OpenGeoSys. The model has been verified by several well-known benchmark tests for heat transport as well as for single- and multiphase flow. To describe physical fluid behaviour, highly accurate thermophysical property correlations of various fluids and fluid mixtures have been utilized. These correlations are functions of density and temperature. Thus, the accuracy of those correlations is strongly depending on the precision of the chosen equation of state (EOS), which provides a relation between the system state variables pressure, temperature, and composition. Complex multi-parameter EOSs reach a higher level of accuracy than general cubic equations, but lead to very expansive computing times. Therefore, a sensitivity analysis has been conducted to investigate the effects of EOS uncertainties on numerical simulation results. The comparison shows, that small differences in the density function may lead to significant discrepancies in the simulation results. Applying a compromise between precision and computational effort, a cubic EOS has been chosen for the simulation of the continuous injection of carbon dioxide into a depleted natural gas reservoir. In this simulation, real fluid behaviour has been considered. Interpreting the simulation results allows prognoses of CO2 propagation velocities and its distribution within the reservoir. These results are helpful and necessary for scheduling real injection strategies.Für die numerische Modellierung von unterirdischen Prozessen, wie z. B. geotechnische, geohydrologische oder geothermische Anwendungen, ist eine möglichst genaue Beschreibung der Parameter der beteiligten Fluide notwendig, um plausible Ergebnisse zu erhalten. Fluideigenschaften, vor allem die Eigenschaften von Gasen, sind stark abhängig von den jeweiligen Primärvariablen der simulierten Prozesse. Dies führt zu Nicht-linearitäten in den prozessbeschreibenden partiellen Differentialgleichungen. In der vorliegenden Arbeit wird die Entwicklung, die Evaluierung und die Anwendung eines numerischen Modells für nicht-isotherme Strömungsprozesse in porösen Medien beschrieben, das auf thermodynamischen Grundlagen beruht. Strömungs-, Transport- und Materialgleichungen wurden in die open-source-Software-Plattform OpenGeoSys implementiert. Das entwickelte Modell wurde mittels verschiedener, namhafter Benchmark-Tests für Wärmetransport sowie für Ein- und Mehrphasenströmung verifiziert. Um physikalisches Fluidverhalten zu beschreiben, wurden hochgenaue Korrelationsfunktionen für mehrere relevante Fluide und deren Gemische verwendet. Diese Korrelationen sind Funktionen der Dichte und der Temperatur. Daher ist deren Genauigkeit von der Präzision der verwendeten Zustandsgleichungen abhängig, welche die Fluiddichte in Relation zu Druck- und Temperaturbedingungen sowie der Zusammensetzung von Gemischen beschreiben. Komplexe Zustandsgleichungen, die mittels einer Vielzahl von Parametern an Realgasverhalten angepasst wurden, erreichen ein viel höheres Maß an Genauigkeit als die einfacheren, kubischen Gleichungen. Andererseits führt deren Komplexität zu sehr langen Rechenzeiten. Um die Wahl einer geeigneten Zustandsgleichung zu vereinfachen, wurde eine Sensitivitätsanalyse durchgeführt, um die Auswirkungen von Unsicherheiten in der Dichtefunktion auf die numerischen Simulationsergebnisse zu untersuchen. Die Analyse ergibt, dass bereits kleine Unterschiede in der Zustandsgleichung zu erheblichen Abweichungen der Simulationsergebnisse untereinander führen können. Als ein Kompromiss zwischen Einfachheit und Rechenaufwand wurde für die Simulation einer enhanced gas recovery-Anwendung eine kubische Zustandsgleichung gewählt. Die Simulation sieht, unter Berücksichtigung des Realgasverhaltens, die kontinuierliche Injektion von CO2 in ein nahezu erschöpftes Erdgasreservoir vor. Die Interpretation der Ergebnisse erlaubt eine Prognose über die Ausbreitungsgeschwindigkeit des CO2 bzw. über dessen Verteilung im Reservoir. Diese Ergebnisse sind für die Planung von realen Injektionsanwendungen notwendi

    How to minimize the environmental contamination caused by hydrocarbon releases by onshore pipelines: The key role of a three-dimensional three-phase fluid flow numerical model

    Full text link
    The contamination impact and the migration of the contaminant into the surrounding environment due to the presence of a spilled oil pipeline will cause significant damage to the natural ecosystem. For this reason, it is decisive to develop a rapid response strategy that might include accurate predictions of oil migration trajectories from numerical simulation modeling. In this paper, a three-dimensional model based on a high-resolution shock-capturing conservative method to resolve the nonlinear governing partial differential equations of the migration of a spilled light nonaqueous liquid oil contaminant in a variably saturated zone is employed to investigate the migration of the oil pipeline leakage with great accuracy. The effects on the oil type density, gasoline and diesel oil, the unsaturated zone depth, its saturation, the hydraulic gradient, and the pressure oil pipeline are investigated through the temporal evolution of the contaminant migration following the saturation profiles of the three-phase fluids flow in the variably saturated zone. The calculation results indicate that the leaking oil's pressure is the parameter that significantly affects the contaminants' arrival time to the groundwater table. Also, the water saturation of the unsaturated zone influences the arrival time as the water saturation increases for a fixed depth. The unsaturated zone depth significantly influences the contaminant migration unsaturated zone. At the same time, the oil density and the hydraulic gradient have limited effects on the contaminant migration in the variably saturated zone.Comment: 46 pages, 19 figure

    Numerical modeling of compositional two-phase reactive transport in porous media with phase change phenomena including an application in nuclear waste disposal

    Get PDF
    Non-isothermal compositional two-phase flow is considered to be one of the fundamental physical processes in the field of water resources research. The strong non-linearity and discontinuity emerging from phase transition phenomena pose a serious challenge for numerical modeling. Recently, Lauser et al.[1] has proposed a numerical scheme, namely the Nonlinear Complementary Problem (NCP), to handle this strong non-linearity. In this work, the NCP is implemented at both local and global levels of a Finite element algorithm. In the former case, the NCP is integrated into the local thermodynamic equilibrium calculation. While in the latter one, it is formulated as one of the governing equations. The two different formulations have been investigated through several well established benchmarks and analyzed for their efficiency and robustness. In the second part of the thesis, the presented numerical formulations are applied for application and process studies in the context of nuclear waste disposal in Switzerland. Application studies comprehend the coupling between multiphase transport model and complex bio-geo-chemical process to investigate the degradation of concrete material due to two major reactions: carbonation and Aggregate Silica Reaction(ASR). The chemical processes are simplified into a lookup table and cast into the transport model via source and sink term. The efficiency and robustness of the look-up table are further compared with a fully reactive transport model

    Reactive transport codes for subsurface environmental simulation

    Full text link
    corecore