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A B S T R A C T

Non-isothermal compositional two-phase flow is considered to be
one of the fundamental physical processes in the field of water re-
sources research. The strong non-linearity and discontinuity emerg-
ing from phase transition phenomena pose a serious challenge for
numerical modeling. Recently, Lauser et al.[1] has proposed a numer-
ical scheme, namely the Nonlinear Complementary Problem (NCP),
to handle this strong non-linearity. In this work, the NCP is imple-
mented at both local and global levels of a Finite element algorithm.
In the former case, the NCP is integrated into the local thermody-
namic equilibrium calculation. While in the latter one, it is formu-
lated as one of the governing equations. The two different formula-
tions have been investigated through several well established bench-
marks and analyzed for their efficiency and robustness.

In the second part of the thesis, the presented numerical formula-
tions are applied for application and process studies in the context of
nuclear waste disposal in Switzerland. Application studies compre-
hend the coupling between multiphase transport model and complex
bio-geo-chemical process to investigate the degradation of concrete
material due to two major reactions: carbonation and Aggregate Sil-
ica Reaction(ASR). The chemical processes are simplified into a look-
up table and cast into the transport model via source and sink term.
The efficiency and robustness of the look-up table are further com-
pared with a fully reactive transport model.
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Z U S A M M E N FA S S U N G

Nichtisotherme Mehrkomponenten Zweiphasen probleme in porosen
Medien sind durch äußerst komplex gekoppelte, nichtlineare und
oftmals nichtisotherme Prozesse charakterisiert, wobei zwischen den
beteiligten Fluidphasen ein Massentransfer von Komponenten statt-
finden kann. Ein großes Problem bei der Simulation von Mehrkom-
ponenten Zweiphasen stromungen mit Löslichkeitseffekten tritt auf,
wenn Phase verschwindet und auftaucht. Kürzlich haben Lauser et
al[1]. Hat ein neues numerisches Schema vorgeschlagen, nämlich das
nichtlineare Komplementaritätsprobleme (NCP). In dieser Arbeit wird
zwei Formulierungen mit Komplementaritätsprobleme vorgestellt. Er-
stens ist die NCP”Bedingungen in die lokale thermodynamische Gleich-
gewichtsberechnung integriert. Zweitens, die “NCP”Bedingungen des
Primr Variablentausch Modells können wir auch direkt in das global
Gleichungssytsem einbeziehen. Anhand mehrerer Testprobleme, wer-
den diese beiden Formulierungen numerisch untersucht.

Diese Verfahren sind in der OpenGeoSys-Simulationsumgebung
implementiert. Die Verpressung von CO

2
in salzhaltigen Wasserschich-

ten numerisch zu simulieren. Es wird eine sehr gute Übereinstim-
mung zu den Ergebnissen anderer Simulator.

Im zweiten Teil, diese Doktorarbeit richtet sich spezifisch an den
Anwendungen fr Atommüll Entsorgung aus. Vor Allem an den Mehr-
phasenstromungen Prozessen und chemisch reaktiver Transport Kopp-
lung in diesem Bereich. Die chemischen Prozesse werden in eine
“look-up table”vereinfacht. Die Methode der Simulation wird fr den
Schäden an Betonmaterial eingesetzt. Zwei Haupt-reaktionen Prozes-
sen werden berücksichtigt: Carbonatisierung und Aggregate Silica Re-
action (ASR). Die Effizienz und Robustheit der “look-up table”wird
weiter mit einem voll-reaktiven Transport modell verglichen.

v



T H E S E S

This thesis combines model development, validation and application
studies for non-isothermal compositional two-phase reactive trans-
port in porous media, including phase transition problem. Most es-
sential achievements are listed comprehensively in the following.

1. Two formulations of non-isothermal compositional two-phase
flows incorporating the nonlinear complementarity condition
have been shown to lead to equivalent performances of the
phase transitions.

2. Several Equation of State (EoS) models are presented for both
ideal and non-ideal mixing condition. A special model pro-
posed by Spycher et al.[2] is applied to describe the properties of
CO

2
and brine system. While, Peng-Robinson model is applied

for a general non-idealize mixing system.

3. A nonsmooth inside-out algorithm proposed by Watson et al.[3]
is applied and extended in order to suppress the numerical chal-
lenge where the cubic equation of state is involved for the non-
ideal properties.

4. The two formulation are implemented in the OpenGeoSys frame-
work. Fully implicit Euler scheme is used for time discretiza-
tion, while the Standard Galerkin finite element method is ap-
plied for space discretization. Standard Newton and semi-smooth
Newton are developed for linearization.

5. The presented methods are verified by numerical test simula-
tions of gas transport in nuclear waste repository, as well as
the CO

2
injection in saline aquifers. Different test cases demon-

strated the capability of the implemented two formulations.

6. A new coupling scheme between multiphase flow and reactive
transport is proposed based on a ”look up table” approach. The
complex chemical processes are simplified into a look-up table
and cast into the multiphase transport model via source and
sink term.

7. The presented numerical models are applied to investigate the
degradation of concrete material subjected to two major chem-
ical reactions: carbonation and Aggregate Silica Reaction(ASR).
The numerical results from the presented model agree well with
the output of a fully reactive transport model. While in terms of

vi
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calculation efficiency, the presented model can achieve 10 times
faster compared to the reactive transport model.



T H E S E N

Diese Arbeit kombiniert Modellentwicklungs-, Validierungs- und An-
wendungsstudien für einen nicht-isothermen zweiphasigen reaktiven
Transport in porösen Medien, einschlielich Phasenbergangsproblemen.
Die wichtigsten Leistungen sind im Folgenden umfassend aufgefhrt.

1. Es hat sich gezeigt, dass zwei Formulierungen von nicht-isothermen
Mehrkomponenten-Zweiphasenstrmungen, die nichtlineare Kom-
plementarittsbedingung beinhalten, zu äquivalenten Leistungen
der Phasenübergänge führen.

2. Mehrere EoS-Modelle werden sowohl für ideale als auch für
nicht-ideale Bedingungen vorgestellt.

3. Ein nicht-glatter Inside-Out-Algorithmus, von Watson et al. [3],
wird angewendet und erweitert, um die numerische Herausfor-
derung zu unterdrcken, wenn das kubische EoS-Modell für die
nicht-idealen Bedingungen verwendet wird.

4. Die zwei Formulierungen sind in der OpenGeoSys Simulati-
onsumgebung implementiert. In der vorliegenden Implemen-
tierung, wird die Formulierungen mit einer Finite-Elemente-
Methode diskretisiert. In dieser Arbeit wird die Verwendung
des Newton-Verfahrens fr die globalen und lokalen Probleme
vorgestellt.

5. Die Verpressung von CO
2

in salzhaltigen Wasserschichten nu-
merisch zu simulieren. Es wird eine sehr gute Übereinstimmung
zu den Ergebnissen anderer Simulator.

6. Ein neues Kopplungsschema zwischen Mehrphasenströmung
und reaktivem Transport wird basierend auf einem Nachschla-
getabellenAnsatz vorgeschlagen. Die komplexen chemischen Pro-
zesse werden in eine Nachschlagetabelle vereinfacht und ber
Quell- und Senkzeit in das Mehrphasen-Transportmodell um-
gewandelt.

7. Die vorgestellten numerischen Modelle werden angewendet, um
die Degradation von Betonmaterial. Zwei wichtige chemische
Reaktionen werden untersucht: Carbonatisierung und Aggrega-
te Silica Reaction (ASR). Es wird eine gute Übereinstimmung
zu den Ergebnissen eines vollstndig reaktiven Transportmodells.
Das vorgestellte Modell kann 10-mal schneller als das reaktive
Transportmodell sein.

viii



A C K N O W L E D G E M E N T S

In the last four years, I have conducted my PhD research in the De-
partment of Environmental Informatics, Helmholtz Centre of Envi-
ronmental Research - UFZ. It has been a wonderful and rewarding
journey for me. I feel grateful and indebted to many people who
have provided me with their unconditional support. I would like to
take the opportunity to express my deep gratitude.

First of all I would like to thank my supervisor, Prof. Olaf Kolditz,
for his help and constant encouragement. My second advisor, Junior-
Prof. Haibing Shao, has played a key role in both my research career
and personal development. I am most grateful of the strong friend-
ship we were able to establish in the last couple of years. I am in-
debted to Haibing for his help and support on the development of my
research presented in this dissertation. Also, I would like to express
my gratitude to Dr. Georg Kosakowski, who brings me a deeper un-
derstanding of reactive transport modelling and the knowledge about
nuclear waste disposal. I appreciate his patience and supports.

This work would not have been finished without the OpenGeoSys
platform, so I want to thank all OpenGeoSys developers for their
worthwhile suggestion and support.

Furthermore, I would like to deliver my gratefully acknowledge-
ment to the China Scholarship Council. Their financial support al-
lows me to focus on the research work presented in the dissertation.

Most of all, I want to thank my family for their patience, inspiration
and support throughout all these years. Special thanks go to my wife,
Zhou Yang, for her love and understanding. I only wish I could have
had more time to be company with her in the past four years.

ix





C O N T E N T S

i background, theory and numerics 1

1 introduction 2

1.1 Motivations 2

1.2 Challenges 3

1.3 Current state of research 4

1.4 Scope of this thesis 6

1.5 Outline of this thesis 6

2 mathematical formulations of non-isothermal

two-phase multi-component flow 8

2.1 Fundamental Concepts 8

2.2 Conservation of mass 9

2.3 Conservation of energy 9

2.4 Intrinsic constraints and closure relationship 10

2.5 Phase behavior 11

2.5.1 Flash calculation 11

2.5.2 Primary Variable Switching (PVS) 12

3 modeling phase change with non-linear comple-
mentary condition 13

3.1 Non-smooth model for phase behavior calculation 13

3.1.1 Idealized system 15

3.1.2 Non-ideal system 16

3.2 Comparative phase behaviour calculation 18

4 two non-smooth formulations for phase change 22

4.1 Formulation based on overall-composition variables 22

4.1.1 Governing equation 22

4.2 Formulation of natural variables 24

4.2.1 Treatment of phase appearance and disappear-
ance 25

4.2.2 Treatment of phase appearance and disappear-
ance 27

4.3 Comparison between different formulations 27

5 equation of state (eos) 29

5.1 Ideal Mixing system 29

5.2 Equation of State (EoS) for a brine/CO
2

system 30

5.3 Cubic Equation of State 32

6 numerics 35

6.1 Discretization 35

6.1.1 Linearization strategy 36

6.1.2 Interface continuity requirement 40

xi



Contents xii

7 two-phase reactive transport model with a look-
up table 42

7.1 Background 42

7.2 Concrete degradation and creation of look-up table 44

7.2.1 Hydrated motar 44

7.2.2 Carbonation 44

7.2.3 ASR 46

7.2.4 Chemical and physical changes upon concrete
degradation 46

7.3 The coupling strategy 47

8 model applications 49

8.1 Benchmarks for idealize system 50

8.1.1 Benchmark I: Drying by gas injection 50

8.2 Benchmarks for non-ideal system 54

8.2.1 Benchmark II: Injection of CO
2

into water satu-
rated domain 54

8.2.2 Benchmark III: Cold CO2 injection into a saline
aquifer 58

8.2.3 Benchmark IV: Co-injection CO
2

and Impurities
in CCS application 63

8.3 Benchmarking the look-up table approach 70

8.3.1 Conceptual of the application 70

8.3.2 Model configuration 70

8.3.3 Model dimensions and discretization 71

8.3.4 Results and discussion 71

8.3.5 Reference 78

ii summary and outlooks 1

1 discussion and summary 2

1.1 Remarks on the non-isothermal compositional two-phase
flow model 3

1.1.1 Background 3

1.1.2 Conclusion 4

1.1.3 Reference 4

1.2 Remarks on the two-phase reactive transport model
with look-up table 4

1.2.1 Discussion 4

1.2.2 Conclusion 6

1.2.3 Reference 7

1.3 Outlooks 7

1.3.1 Application 7

1.3.2 Model extension 8

iii appendix 9

a appendix 10

a.1 Paper 1 10

a.2 Paper 2 34



Contents xiii

a.3 Code availability 53



N O M E N C L AT U R E

Greek symbols

µα Dynamic viscosity of phase α [Pa s]

λT Effective heat conductivity tensor [W (m K)−1]

ν The normalized molar fraction of gas phase [-]

Ω (sub)domains

ω test function

φ Porosity [-]

Φi Fugacity coefficient [-]

ρ Mass density [kg m−3]

Operators

∧ Logical and

∇ Gradient operator

⊥ Complement operator

div Divergence operator

Roman symbols

cpα Specific heat capacity of fluid phase α [J (kg K)−1]

cpS Specific heat capacity of soil grain [J (kg K)−1]

Di
α Diffusivity tensor [m2 s−1]

Da Apparent diffusion coefficient. [m2 s−1]

Fi Source or sink term of component i [kg (m3 s)−1]

f i
α Fugacity of component i in α phase [Pa]

g Gravitational acceleration [m s−2]

H Henry constant [mol (Pa m3)−1]

hα Specific enthalpy of phase α [J kg−1]

Ji
α Diffusive flux of component i in phase α [mol m−2 s−1]

K Intrinsic permeability tensor [m2]

xiv



Contents xv

k The equilibrium ratio [-]

krα Relative permeability of phase α [-]

Mi Molar mass of ith component [kg mol−1]

Nα Molar density of phase α [mol m−3]

Nc Total number of components existing in the system

Pα Pressure in phase α [Pa]

PC Capillary pressure [Pa]

Psat Vapor saturation pressure [Pa]

Pvap Vapor pressure [Pa]

q Darcy velocity [m s−1]

QT Heat source or sink [W m−3]

S Saturation [-]

ssal The salinity of water [-]

T Temperature [K]

uα Specific internal energy [J kg−1]

UP Primary variable set

US Secondary variable set

xi
α Molar fraction of ith component in phase α [-]

xi Molar fraction of component i in liquid phase [-]

yi Molar fraction of component i in gas phase [-]

zi The overall molar fraction of component i [-]



A C R O N Y M S

BC Boundary condition

CCS Carbon Capture Storage

DOF Degree of freedom

EoS Equation of State

NCP Nonlinear Complementary Problem

FEM Finite Element Method

IC Initial condition

OGS OpenGeoSys

PVS Primary Variable Switching

PPC Pressure-Capillary Pressure formulation

THMC Thermo-hydro-mechanical-chemical

OpenGeoSys-MP-LT Opengeosys multiphase model coupled with
look-up table approach

OpenGeoSys-GEM Opengeosys coupled with GEM

ASR Alkali-Silica-Reaction

xvi



Part I

B A C K G R O U N D , T H E O RY A N D N U M E R I C S



1
I N T R O D U C T I O N

1.1 motivations

Modelling non-iosthermal compositional two-phase flows is consid-
ered to be one of the most fundamental physics processes in many
geo-scientific applications. A traditional yet still active field is in
petroleum engineering, where people are trying to predict the flow of
oil and gas in deep reservoirs. Numerical reservoir models are often
employed to maximize hydrocarbon production rates, and thus to in-
crease the profitably [4]. Another newly emerged topic nowadays is
to reduce the atmospheric carbon dioxide (CO

2
) concentration by the

so-called CO
2

geological sequestration, i.e. CO
2

capture and storage
(CCS) in subsurface geological formations. Instead of being released
to the atmosphere, gaseous CO2 is condensed into the super-critical
state and pumped into subsurface reservoirs, which have to fulfill
special conditions, concerning e.g. minimum depth, temperature and
the presence of a well-sealed cap-rock. Other recent applications of
non-iosthermal compositionald two-phase numerical models include
the investigation of gas generation and migration in underground nu-
clear waste repositories. There, the radioactive wastes are stored in
sealed containers. Under the influence of (bio)chemical reactions, cor-
rosion and degradation happens along with the radiolysis of water
over thousands to millions of years. Over this long period, multiple
gas components might be generated both within the containers and
migrate through the repository. These processes might lead to pres-
sure build-up within the container, as well as in the repository scale.
In the worst case scenario, when the pressure reaches a critical value,
the generated gas could lead to cracks in the engineered barrier sys-
tem and undesired release of radioactive material. In this context, the
numerical modelling of compositional two-phase transport serves as
a critical tool in the long-term safety design and assessment of the
nuclear waste repository.

These above mentioned applications are challenging with respect
to the complex chemical and physical processes associated with the
two-phase flow and transport, which are represented by different yet
coupled partial differential equations. They can hardly be solve by
analytical solution, and thus numerical simulation tools are rising as
a widely adopted approach to interpret the aforementioned coupled

2



1.2 challenges 3

processes. Due to the complexity of the porous media, the nonlinear
behaviour of fluid properties and their interactions, it is crucial to
develop accurate and efficient numerical models and computational
methodologies of two-phase flow and transport for a better under-
standing of the aforementioned geo-scientific applications.

1.2 challenges

Conventionally, an immiscible two-phase flow model, e.g. black-oil
reservoir models [5], is utilized to simulate the flow of two immiscible
phases in the porous medium. The model normally consists a system
of two coupled transient and nonlinear partial differential equations.
The drawback of such model formulation is that it does not include
solubility, and the phase exchange can not be properly described ei-
ther. Thus, such model is not suitable for physical scenarios where
solubility has important impact.

The mathematical framework that includes solubility and equilib-
rium phase exchange is called compositional two-phase flow model.
In such a framework, the liquid and gas phases are constituted by
(more than) two components. In contrast to the immiscible model,
each phase is allowed to consist of multiple chemical components,
which can be exchanged across the phases. Moreover, the phase be-
havior is typically represented by the choice of corresponding Equa-
tion of State (EoS) within a certain pressure and temperature range.

Non-isothermal compositional simulation is typically much more
challenging and complex in comparison with an isothermal model.
The main complexities or challenges stem from the thermal effects
embedded in the tight coupling between pressure, temperature and
phase compositions. Two well-known problems associated with this
coupling in a reservoir simulation are the so-called narrow-boiling
point problem [6] and the apparent negative compressibility effect
[7]. They impose significant nonlinear convergence difficulties.

One of the most critical challenges in modeling non-isothermal
compositional two-phase flow is to determine the phase behavior
especially when phase change happens in the model domain. The
phase change phenomena is mathematically challenging to simulate
due to several reasons. Firstly, the governing equations that describe
two-phase zones and single-phase zones are qualitatively different,
since the composition of two-phase zones is controlled by thermody-
namic equilibrium, while it is not the case in single-phase zone [8].
Moreover, the pore fluid mixture can either be in a single-phase or
a two-phase state, depending on the local pressure, temperature and
phase composition. Such phase transition creates discontinuities in
the primary or secondary variables e.g. phase saturation. In addition
to that, phase change induced latent heat effects cause nonlinearities
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in the energy balance equation, which can lead to difficulties in nu-
merical convergence.

1.3 current state of research

Over the past decades, several researchers have suggested reliable
approaches for handling the aforementioned uncertainties and chal-
lenges associated with phase change. One widely used approach is
based on a two-stage procedure, combining phase stability analysis
and flash calculation. Usually the phase stability test is applied in
prior to detect whether a postulated number of equilibrium phases is
stable by using the Gibbs tangent plane criterion [9]. This requires the
solution of a global optimization problem for each set of trial phase
until the set corresponds to a stable mixture. After the phase sta-
bility analysis, a flash calculation is applied to determine the phase
compositions. Such a guess-and-check routine is considered compu-
tationally expensive and prone to slow convergence [10].

Another widely used model is so-called Primary Variable Switch-
ing method initially presented by Coats et al. [7] based on a natural
variable formulation. In the following decades, many numerical mod-
els were further developed based following this approach, i.e. Wu et
al. [11] and also Class et al. [12]. In their models, a local criteria based
upon saturation pressure test is employed to detect the phase stabil-
ity. In the two-phase region, phase pressure and saturation are used
as primary variables, while in the one-phase region, the saturation is
replaced by total concentration or mass/mole fraction. Nevertheless,
switching the primary variables is a intrinsically non-differentiable
process that can again potentially lead to numerical difficulties [1] of
convergence.

More recently, a variety of methods have been proposed to model
the gas phase appearance and disappearance in a nuclear waste dis-
posal. Panfilov et al. [13] proposed a negative saturation scheme and
extended the saturation definition to artificial negative values and
also values higher than 1, which correspond to the unsaturated and
over-saturated zones respectively. Bourgeat et al. [14] suggested to
use persistent primary variables to handle phase change by regulariz-
ing Henry law formulation. Neumann et al. [15] and Amaziane et al.
[16] provide different possibilities for the choice of persistent primary
variable set. However, limited research have been made regarding a
non-ideal condition where Henry law cannot be applied.

Lauser et al. [1] present a novel method that formulate the phase
change logic as nonlinear complementary constraints and use semi-
smooth Newton to solve the non-smooth equation system. A similar
algorithm can be found in [17]. Recent study [18] indicates that con-
ventional natural formulation shows even better performance against
the natural formulation with a complimentary constraints under non-
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ideal mixing condition. The reason behind that is possibly the ill-
conditioned or rank deficient global Jacobian matrix structure [19],
or a bad initial input for the semi-smooth Newton iteration at places
where phase appears or vanishes [15].

It needs to be mentioned that Watson et al. [3] proposed a non-
smooth formulation for simulating the phase appearance and disap-
pearance in chemical processes engineering. In their model, the phase
change logic is firstly formulated as a nonlinear complementary con-
dition similar to [1], then these NCPs are rewritten as a non-smooth
model. The proposed model leads to a differential algebraic equation
system which can be efficiently solved by an improved non-smooth
inside-out algorithm [20]. Unlike the previous work mentioned above,
this model neither requires the rigorous and costly stability analysis,
nor does it introduce discontinuities in the model equations. In ad-
dition, the performance of this model is not strongly dependent on
good initial guesses, therefore the phase change problems can be han-
dled in a very compact way.

Owing to the similarities shared between chemical processes engi-
neering modeling and fully compositional reservoir model with re-
spect to the thermodynamic equilibrium flash part [21], this novel
non-smooth model can be applied to compositional phase behavior
model. Finally in this work, a fully EoS-oriented approaches for the
flash calculation which are agnostic to the number of phases presents
in the system are developed for two-phase compositional flow model.
To the author’s knowledge, the non-smooth thermodynamic equilib-
rium model can be implemented in two different ways associated
with different primary variable choices.

Local-NCP formulation employs the overall-composition variables
[22, 10] as the primary variable set. In this formulation, the NCP is
combined with thermodynamic model to construct the local problem
for solving all secondary variables such as phase saturation [23]. A
nonlinear solver of the semi-smooth Newton type is applied to deter-
mine the phase state on the local level, as well as the other secondary
variables. Meanwhile, standard Newton iterations are employed to
solve the global mass and energy conservation for all global primary
degrees of freedoms.

Global-NCP formulation employs natural variables [7] as the pri-
mary variable set. In this formulation, the NCP constraints are com-
bined with mass and energy balance equations, along with thermo-
dynamic equilibrium model, to construct the global governing equa-
tions. The extended global system can now be solved by an iterative
semi-smooth Newton algorithm without requiring nested Newton it-
erations to identify the local phase state.

To the author’s knowledge, there has been rarely a detailed anal-
ysis of these two nonsmooth formulations, with respect to their nu-
merical performance and computational efficiency in solving the non-
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isothermal compositional two-phase flow problem. In this work, the
investigation will be based on the scientific simulator OpenGeoSys
[24, 25], which has been extended to have both NCP implementa-
tions equipped. The spatial discretization is based on the Galerkin
Finite Element method (GFEM), while a fully implicit Euler scheme
is applied for time integration.

1.4 scope of this thesis

In this thesis, a non-isothermal two-phase compositional simulation
module has been implemented, analyzed, and further extended based
on the OpenGeoSys (OGS). It will be demonstrated to handle the chal-
lenging phase change problem properly. The newly implemented
model was further applied to investigate the gas generation and mi-
gration in a nuclear waste repository.

The following key scientific questions have been investigated in this
work.

• Which numerical schemes are robust and efficient enough in
handling non-isothermal two-phase compositional flow with phase
change phenomena?

• How is the numerical performance of the two aforementioned
NCP formulations in real case studies with (non)-ideal gas-liquid
distribution conditions?

• Are there new physical understandings obtained when apply-
ing the newly implemented two-phase model integrated with
chemical reactive processes in simulating the degradation of
concrete in the context of long-term safety assessment of the
nuclear waste repository?

1.5 outline of this thesis

This thesis is structured as follows. In Chapter 2, the fundamental
theorem of non-isothermal compositional two-phase fluid flow is re-
viewed and explained. The mathematical formulations for mass and
energy conservation are derived, along with the local thermodynamic
equilibrium. The non-smooth numerical model for handling phase
change is further interpreted in Chapter 3. The details of local and
global NCP formulations are introduced in Chapter 4. Following that,
Chapter 6 focuses on the technical issues regarding spatial and tem-
poral discretization, as well as linearization and numerical solution
strategies. In Chapter 7, the chemical model for concrete degradation
and the approximation by the look-up table is explained, moreover,
the couple strategy between look-up table and compositional two-
phase flow transport model are describe. In Chapter 8, three groups
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of benchmarks are dedicated to the model verification and validation.
Numerical performance analysis of different numerical schemes are
further compared and discussed.



2
M AT H E M AT I C A L F O R M U L AT I O N S O F
N O N - I S O T H E R M A L T W O - P H A S E
M U LT I - C O M P O N E N T F L O W

In this chapter, a system of partial differential equations describing
non-isothermal two-phase compositional flow in the porous medium
is derived. The multiphase flow and transport in the porous medium
is described using a continuum approach on a macroscopic scale.

2.1 fundamental concepts

Different length scales have to be taken into account for modeling
flow in porous media. For a continuous model on the macroscopic
scale possible heterogeneities and characteristics on the smaller scale
have to be taken into account. In this work the averaging procedure
by Bear [26] is used, where an average value for each point in the con-
tinuum is determined through a representative elementary volume
(REV) on the microscopic scale. With the REV concept in mind, the
porous media can be mathematically described with the following
properties.

• Porosity. In a porous medium, the porosity φ is defined as
the ratio between the volume of the void space over the total
volume of a given REV.

• Saturation. The saturation S is defined as the ratio between the
volume of phase and the total volume of pore space in a given
REV.

• Intrinsic Permeability Intrinsic Permeability K measures the
ability of a fluid to flow through a porous medium. The tensor
K solely depends on the porous medium, not the fluid. If the
porous medium has a preferred flow direction, K is anisotropic.

• Relative Permeability If more than one phase exist in the porous
medium, the flow of one phase is inhibited by the presence of
the other phase. This is measured by the relative permeability
krel of phase α, which only depends on the saturation of the
phase krel(Sα).

The fluid is then characterized with the following properties:

8
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• Viscosity. Viscosity µ describes the resistance of a fluid to defor-
mation by shear stress. Dynamic viscosity heavily depends on
the pressure and temperature, as well as the phase composition.

• Molar(mass) Density. Molar(mass) density is defined as the
number of moles(mass) per volume in phase α. The density
depends on pressure and temperature and also on the composi-
tion of the phase.

• Molar(mass) fraction. Molar(mass) fraction of component i in
phase α is the ratio of the molar(mass) of component i in phase
α and the mass of phase α in a REV. In this work, the symbol X
and x denote the mass and molar fraction, respectively. For two
components, e.g. component i and j, the relationship of molar
fraction and mass fraction can be derived by

xi
α =

Xi
α Mj

X j
α Mi + (1− X j

α)Mj
(2.1)

where M is the molar mass of component κ. By definition, the
molar or mass fractions in one phase sum up to unity.

Nc

∑
i=0

xi = 1
Nc

∑
i=0

Xi = 1 (2.2)

2.2 conservation of mass

The mass conservation equation system for conventional two-phase
isothermal compositional reservoir simulation can be written as

φ
∂

∂t

(
∑

α∈{G,L}
NαSαxi

α

)
+ div

[
∑

α∈{G,L}
Nα(xi

αqα + Ji
α)

]
= Fi. (2.3)

Here, xi
α is the molar fraction of component i in phase α, and Sα is the

saturation of phase α, Nα represents the phase molar density. For a
particular phase α, its velocity qα is given by the generalized Darcy’s
law:

qα = −Kkrα(S)
µα

(∇Pα − ραg), (2.4)

with ρα indicating the mass density of phase α, and the diffusive
flux Ji

α governed by Fick’s law

Ji
α = −φSαDi

α∇xi
α. (2.5)

2.3 conservation of energy

When thermal effects need to be considered, the energy balance equa-
tion is then augmented along with the above mass balance formula-
tions
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φ
∂

∂t
[(1− SG) ρLuL + SGρGuG]

+ (1−φ)
∂

∂t
(ρScpST) + div [ρGhGqG]+ div [ρLhLqL]−div (λT∇T) = QT

(2.6)

where ρG, ρL, ρS represent the mass density of the gas, liquid
and solid phase, respectively. cpS denotes its specific heat capacity.
The specific internal energy uL and uG define the total energy of the
molecules of liquid and gas phase per unit mass (kg), respectively.
The specific enthalpy hα in phase α can be computed as

hα =
∫ T

T0

cpαdT. (2.7)

Note that the enthalpy of gas phase is higher than that of the liquid,
and the difference between them equals to the latent heat of vapor-
ization at given pressure and temperature, which guarantees that the
phase transition from liquid to gas.

The relationship between specific internal energy uα and the spe-
cific enthalpy hα is related to the pressure volume work. Since the
liquid phase is assumed to be incompressible in this work, i.e. the
volume change in the liquid phase is neglected. Then its enthalpy
is quantitatively the same as its internal energy (uL = hL). For the
compressible gas phase, however, its specific enthalpy is regulated by

hG = uG +
PG

ρG
(2.8)

To sum up, the equations (2.3) to (2.6) provide a general mathemat-
ical framework for non-isothermal componential two-phase flow.

2.4 intrinsic constraints and closure relationship

A saturation constraint holds on phase saturation given by

∑
α∈{G,L}

Sα = 1 (2.9)

The capillary pressure is a monotonic and continuous function of
phase saturation. By its definition, it can be written as:

Pc(S) = PG − PL (2.10)

where PG is the gas phase pressure, and PL is the liquid phase pres-
sure.
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2.5 phase behavior

Instantaneous thermodynamic equilibrium is the most general as-
sumption for the non-isothermal two-phase compositional model and
it can be expressed as equality of fugacity in the gas and liquid phase,
i.e.

f κ
G(P, T, xκ

G) = f κ
L(P, T, xκ

L) (2.11)

holds for any component κ in gas (G) and liquid (L) phases. Here, f κ
G

and f κ
L represents the fugacity of component κ, usually it can be ex-

pressed as a function of reference pressure, temperature, molar frac-
tion of component κ in gas/liquid phase.

f κ
α := Φκ

αPαxκ
α. α ∈ {G, L} (2.12)

where Φκ
α indicates the fugacity coefficient of component κ. It can

be further determined by using the equation of state. For ideal mix-
ture, Φκ

G = 1 holds for the ideal gas phase, while in the liquid phase,
Henry law and Raoult law are applied to calculate the fugacity co-
efficient of solute components and solvent components, respectively.
For non-ideal mixture, cubic equation of state (e.g. Peng-Robinson
Equations[27]) are usually utilized.

In two-phase compositional simulation, a mixture z at a given pres-
sure (P) and temperature (T) condition, can either be in a single phase,
or two-phase state. The phase behavior calculation differs depending
on the current phase status of the system, since the composition of
single phase is no longer controlled by the thermodynamics.

Conventionally, there are two widely used approaches to handle
the difficulties associated with phase change:

2.5.1 Flash calculation

The flash calculation refers to the thermodynamic equilibrium cal-
culation which splits the overall molar fraction of components into
the component molar fraction in each phase. This method generally
include a two-stage calculation, namely phase stability analysis and
flash calculation. For this method, an overall molar fraction of com-
ponents is usually chosen as primary variable. The solution routine
of this method can be summarized as follows:

• For any element in which a single phase is present, the phase
stability analysis is performed to check whether the current
phase status is stable or switch to a two-phase states. Usually,
a tangent plane distance analysis [9] is used to determine the
phase stability and obtain the number of stable phases.

• The flash calculation are then performed on each element to
compute the phase compositions at equilibrium. A scheme com-
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bining successive substitution iteration and Newton iteration is
performed for the solution of the flash calculation.

2.5.2 Primary Variable Switching (PVS)

In this method, different primary variable set are applied according
to the number of existing phases for each element. In the two-phase
region, a phase pressure and saturation are used as primary variables,
while in the single phase region, the saturation is replaced by the
concentration or mass/mole fraction for the present phase. The phase
appearance and disappearance can be detected as follows:

• After each global Newton iteration, if the saturation is detected
to be negative, the saturation is set to zero and molar fraction is
used as primary variable.

• After each global Newton iteration, if saturation is detected to
be zero, then a saturation pressure is calculated for this sin-
gle phase element. If the saturation pressure is larger than
the phase pressure, then saturation is used as primary variable
again.

Both of two approaches have demonstrated the capability to model
phase transition, yet some specific restrictions remain. For example,
in the PVS scheme, numerical oscillation might be introduced within
Newton iterations due to frequent switching of primary variables,
which often leads to irregular convergence behavior, whereas for the
flash calculation approach, the global minimization of Gibbs free en-
ergy required by phase stability analysis usually leads to a time con-
suming computation.



3

M O D E L I N G P H A S E C H A N G E W I T H N O N - L I N E A R
C O M P L E M E N TA RY C O N D I T I O N

In this chapter, a novel non-smooth inside-out algorithm [3] is pre-
sented and extended aiming at handling both idealize and nonide-
alize thermodynamic flash calculation which includes the associated
phase change phenomena.

3.1 non-smooth model for phase behavior calculation

Let z be the overall molar fraction. For a two-phase system with
nc components, the over all molar fraction z can be represented as
a linear combination of liquid phase molar compositions x and gas
phase molar composition y:

zi = (1− ν)xi + νyi (3.1)

with xi, yi correspond the molar fraction of component i in liquid
and gas phase, respectively. ν is the normalized molar fraction of gas
phase. In a single gas phase, ν = 1, and in a single liquid phase, ν = 0,
while in a two-phase zone, 0 < ν < 1.

The relation between the phase molar fraction and saturation is
given by:

ν =
SG NG

SG NG + (1− SG)NL
(3.2)

In Masson et al. [28], it is proven that the sign of phase molar fraction
provides equivalent criteria for phase change to the phase saturation.
The equilibrium ratio k for a component i between phases is given by:

ki = yi/xi (3.3)

It represents the distribution of component i in gas and liquid phase
(also recalled k-value), which is generally a function of temperature,
pressure and phase composition. By rearrange the above equations,
the liquid phase molar compositions x and gas phase molar composi-
tion y can be reformulated as follows:

xi =
zi

1 + ν(ki − 1)
(3.4)

13
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yi =
ziki

1 + ν(ki − 1)
(3.5)

Thermodynamic equilibrium and the constitutive equation is assumed
to hold:

nc

∑
i=1

yi −
nc

∑
j=1

xj = 0 (3.6)

Substituting Eq (3.4) and Eq (3.5) into Eq (3.6), the well known Rachford-
Rice equation [29] can be obtained and replace the Eq (3.6):

nc

∑
i=1

zi(ki − 1)
1 + ν(ki − 1)

= 0 (3.7)

the Rachford-Rice equation is more preferred due to its desirable con-
vergence and good numerical properties [30]. The function is mono-
tonically decreasing, which indicates that the solution of this function
contains no false roots, i.e. nonphysical roots.

Watson and Barton [3] proposed a new method to allow this func-
tion to convergence to a single-phase zone. By using the following
non-smooth equation to replace the Eq (3.7), the phase transition can
be detected in a more natural way without a trial and guess proce-
dure or solving a non-convex optimization problem.

mid (ν,−
nc

∑
i=1

zi(ki − 1)
1 + ν(ki − 1)

, ν− 1) = 0 (3.8)

where the function mid: R3 → R maps to the median value of its
three arguments and is a piecewise-continuously differentiable func-
tion, meaning that in a neighborhood of every point it is described
by a member of a finite collection of continuously differentiable func-
tions. A detailed description of the mid function can be referred to
appendix.

As discussed in [3], the three arguments in the mid function in
Eq (3.8) correspond to the solutions for a single liquid phase, a two-
phase, and a single gas phase, respectively. The equation behaves as
follows:

• when only single liquid phase exist,

ν = 0 and the Rachford-Rice residual [31] is negative, while the
third term is equal to -1, therefore the mid function choose the
first term and evaluates to zero, satisfying Eq (3.8)

• when only single gas phase exist,

the only gas phase case is analogous, ν = 1 and the Rachford-
Rice residual is positive [31], and the third term is equal to 0,
therefore the mid function choose the third term and evaluates
to zero, which satisfies Eq (3.8).
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• when two phases co-exist in the system,

we have 0 < ν < 1 and the Rachford-Rice residual must be zero,
therefore in Eq (3.8) the first term is positive. The second term
is zero and the third term is negative, thus the mid function
chooses the second term and evaluates to zero.

Noted that, as indicate in Sahlodin et al. [32], this formulation was
proven to follow from local minimization of total molar Gibbs free
energy of a mixture.

3.1.1 Idealized system

For an idealized system, the K-values (ki) are considered to be inde-
pendent of phase composition. Henry law and Raoult law are applied
to denote the K-values for different components:

kj =
H j(T)

PG
(3.9)

kv =
Psat

PG
(3.10)

superscript (·v) denotes the water vapor component, while j denotes
the multiple gas component except water vapor. H j(T) refers to the
Henry constant for component j which is a function only depends on
temperature. While Psat is the saturated vapor pressure and is given
by ClausiusClapeyron equation:

Psat(T) = P0 exp
[(

1
T0
− 1

T

)
h∆e Mw

R

]
(3.11)

where T0 = 373K , P0 = 105Pa,R is the universal constant, h∆e is en-
thalpy of vaporization, Mw is molar mass of water. When the capil-
lary pressure is high enough, the vapor pressure lowering due to the
capillary effects, should be regularized by Kelvin equation.

Psat∗ = exp (
RT

MwρL
) (3.12)

It is evident from the Eq (3.9) and (3.10) the K-value calculation re-
quires no iterations. Thus, the phase behavior calculation for idealize
system can be summarized as:

f i
G

(
PG, T, xi

G

)
− f i

L

(
PL, T, xi

L

)
= 0

mid (ν,−
nc

∑
i=1

zi(ki − 1)
1 + ν(ki − 1)

, ν− 1) = 0
(3.13)

By solving Eq (3.13), we can obtain the ν, xi and yi. Then using ideal
gas law to compute the gas phase molar density NG, while the water
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density is described by IAPWS equations ([33]). Finally the phase
saturation SG is given by

SG =
ν/NG

ν/NG + (1− ν)/NL
(3.14)

3.1.2 Non-ideal system

In a non-ideal system, the equilibrium ratio ki is highly dependent
on the phase composition, which leads to a strong nonlinear equa-
tion system. Furthermore, the existence of complementary condition
leads the formulation of phase behavior model to being non-smooth
and makes it difficult and computationally expensive to solve. Be-
sides, a good initial guess is usually required when Newton-type it-
eration method is utilized to handle the nonlinearities, which can be
potentially challenging to generate without a prior information about
the phase status. Especially when phase change happens, the initial
guess might differ with the solution in different phase status, which
consequently results in slow convergence, or even failure.

To this end, Watson et al. [34] proposed a non-smooth inside-out
algorithm, by extending the conventional Boston-Britt inside-out al-
gorithm [20] to cover the phase change problem. In this work, we
extend the algorithm of Watson et al. to two-phase compositional P-T
flash calculation scenario. Two distinguished modifications are made:

• Fugacity equality is applied instead of the enthalpy balance.

• Newton-type iteration is applied to accelerate the convergence.

The inside-out algorithm is an iterative two-loop nested procedure,
with the two loops referred to the inner loop and outer loop. In the
outer loop, the phase equilibrium and fugacity equality model are ap-
plied to generate parameters for the inner loop, e.g. the phase equi-
librium ratios Ki are provided. Then in the inner loop, the flash calcu-
lations are converged to get the the phase fraction. The nested loop
repeated until the error of outer loop drops in a pre-setting ranges.

Next, a detailed inside-out algorithm for a typical P-T flash calcula-
tion is discussed. Following Boston and Britt’s idea [20], an iterative
volatility parameter” u is introduced for the outer loop iteration, and
it is defined as:

ui = ln (ki/kb) (3.15)

where kb is a reference equilibrium ratio.
While another iterative variable R is introduced in the inner loop in

order to relax the phase equilibrium constraints for the single phase
zone, and it is given by the following identity

R =
kbν

kbν + kb
0(1− ν)

, (3.16)



3.1 non-smooth model for phase behavior calculation 17

where kb
0 is a constant used to avoid numerical trouble when kb is

very large or small. In this work, kb
0 is set to 1. Next we can set up

a variant of complementarity function Eq 3.17 by replacing ν with R,
and it is given as

mid (R,−
nc

∑
i=1

zi(ki − 1)
1 + R(ki − 1)

, R− 1) = 0. (3.17)

An extra vector p which is associated with each component is in-
troduced and defined as follow:

pi ≡ xi(1− ν)
1− R

=
zi

1− R + kb
0Rkb/kb

(3.18)

The definition of p allows the kb can be reformulated in terms of p
and u:

kb =
∑nc

i=1 pi

∑nc
i=1 eui pi (3.19)

Therefore, the gas/liquid phase composition can be calculate as fol-
lows.

xi =
pi

∑nc
i=1 pi (3.20)

yi = eui
pi

∑nc
i=1 pi (3.21)

In summary, the outer loop and inner loop residual functions for the
P-T flash calculation are given as follows:

ΩPT = ‖û− u‖∞ (3.22)

ΨPT = mid

(
R,

nc

∑
i=1

pi − kb
nc

∑
i=1

eui
pi, R− 1

)
(3.23)

where ΩPT, ΨPT correspond to the residual function of the outer and
inner loop, û is the vector of calculated iteration variables during each
iteration update, while vector u is the starting points.

It is evident that the outer loop variables ui is carefully designed to
be independent of each other and not strongly relying on the physi-
cal quantities, e.g. temperature, pressure and phase composition. On
the other hand, the inside loop variables R serves as proxies for the
temperature, pressure, vapor/liquid composition and vapor fraction
of the system. Owing to the introduction of these largely indepen-
dent variables, the performance of this algorithm is quite insensitive
to the quality of the initial guess, which is considered to be a signif-
icant advantage over the conventional methods. However, there is a
substantial amount of initialization that must take place to begin cal-
culations. The initial K-value (ki) can be obtained by Wilson equation:

ki =
Pi

crit
P

(
5.37(1 + ωi)

(
1− Ti

crit
T

))
(3.24)
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Here, Pi
crit and Ti

crit are the critical pressure and temperature for com-
ponent i, and ωi is the acentric factor.

Alternatively, a better initial guess can also come from a previous
time step calculation.

The full implementation of the inside-out calculation is given in
Algorithm 1. The inside loop can be solved by semi-smooth New-
ton Linearization method, while the outer loop convergence can be
achieved by a combination of Successive Substitution Iteration and
Newton-type of iteration.

Algorithm 1 The proposed non-smooth inside-out algorithm for a
PT-flash

1: Guess ν=0.5
2: Guess initial ki using Wilson equation.
3: Set kb ← 1, kb

0 ← 1.
4: Calculate initial u from Eq 3.15

5: Set tolerance εout and εin for outside and inside loop.
6: while ‖ΩPT‖ > εout do . The outside loop
7: Solve ν from Rachford-Rice equation.
8: Calculate R from Eq 3.16.
9: while ‖ΨPT‖ > εin do . The inside loop

10: Solve p for Eq 3.18.
11: Using semi-smooth Newton to solve ‖ΨPT‖ from Eq 3.23.
12: Update new value of R
13: end while. At this point, we have converged R for the model
14: Calculate kb from Eq 3.19

15: Calculate x and y from Eq 3.20 and Eq 3.21.
16: Calculate fugacity coefficient ΦG and ΦL from cubic EoS.
17: Calculate ki from

ln ki = ln(ΦL)− ln(ΦG)

18: Calculate û from Eq 3.15.
19: Calculate ‖ΩPT‖ from Eq 3.22.
20: Set u ← û.
21: Update a new initial guess of ν for Rachford-Rice equation.
22: end while

3.2 comparative study for phase behaviour calculation

with phase change

In this section, a few benchmarks have been selected to show that the
proposed algorithm allows the phase behaviour model to handle the
phase change problem. In all the benchmarks, the following tolerance
and parameters are used: εin = 10−9, εout = 10−8.
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Figure 1.: Results for varying pressure in the hydrocarbon mixture
problem described in Example 1, compared against the re-
sults proposed in Watson et al. (circle symbols)

The first benchmark involves a P-T flash of 5 components hydrocar-
bon system, which is originally proposed in Kamath et al. [35]. It was
further extended by Watson et al. [34] using Peng-Robinson EoS. The
gas and liquid mixture is composed of 2.5 % nitrogen, 65 % methane,
15 % ethane, 15 % propane and 2.5 % butane, with an initial pressure
at 5.5 MPa and temperature varies in the range from 205 K to 300 K
with 0.1 K increments. Peng-Robinson EoS [27] is used to describe the
gas and liquid phase properties and the non-smooth phase behaviour
model is calculated based on the proposed inside-out algorithm. The
simulation results are shown in Figure (1) with respect to the molar
fraction of methane in gas and liquid phase, respectively. And the re-
sults are compared against the result proposed in Watson et al. [34].

The second benchmark is performed in the same hydrocarbon mix-
ture, while the temperature is fix to be constant. The pressure is
varied ranging from 0.1 MPa to 12 MPa with an increments of 0.01

MPa. The other input parameters are kept the same as the previous
test. The simulation results are shown in Figure (2) with respect to
the molar fraction of methane in gas and liquid phase.

It can be observed from both figures, that good agreements exist
between our simulation results and results reported in Watson et al.,
which indicates our implementation can reproduce the phase compo-
sition split calculation in a wide range of pressure and temperature
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Figure 2.: Results for varying pressure in the hydrocarbon mixture
problem described in benchmark 2, compared against the
results proposed in Watson et al. paper (circle symbols)

within considerable good accuracy. A further investigation is per-
formed in terms of the gas phase fraction ν for the scenario when
phase change is taken into account. Two configurations are consid-
ered. In the first one, we fix the temperature to be 260 K and grad-
ually increase the pressure from 0.01 MPa to 12 MPa, while in the
second one, the pressure is fixed to be 9.5 MPa while the temperature
varies from 250 K to 300 K. A comparison is made against the conven-
tional two-stage flash calculation method, where the phase stability
analysis is based on the Gibbs tangent plane method [9].

It can be observed that under these configurations the phase sta-
tus for the mixture system undergoes from one-phase to two-phase
and back to one-phase again. In the first test, along with the increas-
ing of pressure, the liquid phase begin to formulate after pressure
exceeds the dew point, while the gas phase will completely vanish
after pressure exceeds the bubble point. Similar performance can be
observed from the second experiment. The gas bubble is formulated
once the temperature exceeds the bubble point, while the liquid phase
will completely vanish after the temperature exceeds the dew point.
Furthermore, it can be observed that a good match exists between
the results obtained by this work and the results of the conventional
method. The correctness of the implementation are verified.
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Figure 3.: Comparison of gas phase fraction between simulation re-
sults in this work and reference results generated by con-
ventional flash calculation method which are reported in
Watson et al. for the hydrocarbon mixture
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T W O N O N - S M O O T H F O R M U L AT I O N S F O R P H A S E
C H A N G E

The thermodynamic models are usually cast into two-phase composi-
tional simulator by using one of two strategies [36]:

• Treat the thermodynamic equilibrium equations as model con-
straints, and they are solved together with the mass and energy
conservation equations. (cf. Eq 2.3).

• Solve the thermodynamic equilibrium equations separately and
couple them with the mass and energy conservation equations
in a two-step approach.

Based on these two strategies, two non-smooth formulations of non-
isothermal two-phase compositional flow in porous medium are de-
rived along with the corresponding governing equations in this chap-
ter.

4.1 formulation based on overall-composition variables

This formulation was first proposed by Young and Stephenson [22],
and later extended by Collins et al. [37], Marchand et al. [38], in
which the primary variables are chosen to be a overall-composition vari-
ables set [10]. It includes

• the reference phase pressure P,

• overall molar fraction zi, i ∈ [1, . . . , nc − 1], with (nc − 1) de-
grees of freedom,

• and the local temperature T.

4.1.1 Governing equation

In this formulation, the phases are quantified in terms of the overall
molar fraction zi for each component i

zi =
∑α∈{G,L} NαSαxi

α

∑α∈{G,L} NαSα
(4.1)

22
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where Nα is the molar density of the phase α, and xi
α is the molar

fraction of component i in phase α. If we denote N to be the total
molar density, then

N = ∑
α∈{G,L}

NαSα (4.2)

and the mass conservation in terms of each component can be writ-
ten based on the overall composition

φ
∂

∂t
(ziN) + div

[
∑

α∈{G,L}
Nα(xi

αqα + Ji
α)

]
= Fi (4.3)

where the nomenclature follows those introduced in Chapter 2. Once
the primary variable set is fixed, the remaining unknowns are treated
as secondary variables, which include the phase saturation and com-
ponent molar fraction in each phase. Then, the thermodynamic equi-
librium equations are constructed as stand-alone calculation proce-
dure and serve as local problem in each global Newton iteration
loop. Thereby all secondary variables are solved based on integration
points of each element. To summarize, For a given set of primary
variables P, zi (i ∈ [1, . . . ,nc − ]) and T, the local problem reads,

f i
G

(
PG, T, xi

G

)
− f i

L

(
PL, T, xi

L

)
= 0

zi = (1− ν)xi
L + νxi

G

ki = xi
G/xi

L

mid (ν,−
nc

∑
i=1

zi(ki − 1)
1 + ν(ki − 1)

, ν− 1) = 0

(4.4)

In total, there are 2nc + 2 equations, along with 2nc + 2 secondary
variables, including ν, xi

α, α ∈ {G, L}, i ∈ [1, . . . , nc]. The solution
procedure of this local problem with respect to ideal and non-ideal
cases utilize the algorithms discussed in Section 3.1.1 and 3.1.2.

Here we are in a position to discuss the complete solution proce-
dure of the overall-composition formulation. In a FEM fully coupled
fully implicit scheme, the solution is computed in each time step as
follows: Within each global Newton iteration, the global governing
equation system (coupling mass and energy conservation equations)
is solved for updated primary variable values. Subsequently, the local
problem Eq (4.4) is resolved on each Gauss integration point to up-
date the secondary variables, while the primary variables are known
prior. In return, the updated secondary variables are delivered to the
next round of global Newton iteration in order to solve for primary
variables again.

Note that, the thermodynamic equilibrium is solved as local prob-
lem, in which case the appearance or disappearance of a phase is thus
shifted to the local level. In such configuration, the local problem is
considered to be semi-smooth, due to the presence of the NCP con-
straints and the introducing of the ”mid” function. A semi-smooth
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Newton type method is used for linearizing and solving the system
of equations, which enable a quadratically convergence in a neighbor-
hood of the solution. On the other hand, the global governing equa-
tion system is smooth over the domain and can be directly solved
by standard Newton method. For the sake of simplicity, this formu-
lation is named as local Nonlinear Complementary Problem (NCP)
formulation in the rest of the thesis.

4.2 formulation of natural variables

An alternative to the local NCP formulation was proposed by Lauser
et al. [1], in which the natural variable set (cf. Coats et al.[7]) is chosen
as primary variables. They are

• the reference phase pressure P,

• the gas phase saturation SG,

• the phase composition xi
G, xi

L i ∈ [1, . . . , nc], with (2nc) degrees
of freedom,

• and system temperature T.

In this formulation, the system of governing equations (mass and en-
ergy conservation) and the algebraic system of equations associated
with the thermodynamic equilibrium model are solved in a mono-
lithic way.

While in order to address the phase change problem with respect
to the natural variable set, the non-smooth model Eq (3.8) can be
replaced by

mid (ν,
nc

∑
i=1

xi
G −

nc

∑
i=1

xi
L, ν− 1) = 0 (4.5)

or equivalently: 
min

(
SG, (1−

nc

∑
i=1

xi
G)

)
= 0.

min

(
SL, (1−

nc

∑
i=1

xi
L)

)
= 0.

(4.6a)

(4.6b)
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In Watson et al.[3], it is evident that Eq 4.5 is equivalent to Eq 3.8. To
summarize, let H(U) represents the mass and energy balance equa-
tions (2.3)-(2.6), the global governing equation system reads

H(U) = 0

f i
G

(
PG, T, xi

G

)
− f i

L

(
PL, T, xi

L

)
= 0

min

(
SG, (1−

nc

∑
i=1

xi
G)

)
= 0.

min

(
SL, (1−

nc

∑
i=1

xi
L)

)
= 0.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

With U represents the primary variable set: U = [P, SG, xi
G, xi

L, T]T ∈
R(nc+3).

The fugacity equality (Eq 2.11) and phase transition constraint are
resolved along with mass and energy conservation equations within
the same global Newton loop. Meanwhile, the pressure P, tempera-
ture T, phase saturation Sα, and phase composition xi

α are obtained
simultaneously through the global Newton iterations.

4.2.1 Treatment of phase appearance and disappearance

The treatment of phase transition is similar to the overall-composition
formulation, since the complementary condition (Eq (4.7b)) have to be
full-filled.

• if SG − (1 − ∑nc
i=1 xi

G) ≤ 0, it implies SG = 0, and only liquid
phase is present in the system. In this case, the component
molar fraction in the gas phase in virtual equilibrium with the
component molar fraction in the liquid phase can be defined as:

x̃i
G =

1
ki(P, T, xi

L)
xi

L, i ∈ [1, . . . , nc]. (4.8)

• if SL − (1− ∑nc
i=1 xi

L) ≤ 0, it implies SL = 0, and only gas phase
presents in the system, the component molar fraction in the
liquid phase in equilibrium with the component molar fraction
in the gas phase can be defined as:

x̃i
L = ki(P, T, xi

G)xi
G, i ∈ [1, . . . , nc]. (4.9)

Preconditioning strategy At the end of each global Newton iteration,
we find the nodes which are located in single phase zone. Then we
make negative flash calculation (cf. Whitson et al.[29]) on these nodes.
We assume the overall molar fraction of component i is equal to the
component molar fraction in this single phase. Then pressure, overall
molar fraction, temperature are treated as input for the negative flash
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to calculate the phase molar fraction ν. If 0 < ν < 1, it indicates
that the mixture is unstable and the gas and liquid phases will co-
exist on this node during the next Newton iteration loop. Therefore,
before the initialization in the next round of Newton iteration, we
first modify the phase saturation(SG) by the calculated phase molar
fraction ν, according to the equation 3.14.

This formulation was firstly proposed by Lauser et al. [1], in which
fugacity is selected as the primary variable. However, in this work,
the phase composition are preferred in order to avoid a further cal-
ibration of phase composition and their derivatives in terms of the
fugacity. For this type of formulation, phase state identification no
longer requires additional local Newton iterations on each element
or integration point. This means less computational resources are
required on the local level, at the price that the global linear equa-
tion system is larger. Nevertheless, due to its simple structure and
piece-wise linearity of the min-function, a Schur complement reduc-
tion strategy can be further applied on the Jacobian matrix to min-
imize the size of global linear system. More details regarding this
procedure will be discussed in section 6.1.1. For the sake of simplic-
ity, we call this formulation as global NCP formulation in the rest of
the thesis.

formulation of pressure-capillary pressure model

If the saturation can be uniquely obtained with the help of the inverse
of the monotone saturation-capillary pressure function by means of

Sw = P−1
c (pc) (4.10)

capillary pressure can be selected as the primary variable by replac-
ing saturation. Neumann et al. [15] extend the scope of the gas
phase pressure and the capillary pressure and use them as primary
unknowns in a two-phase two- component model taking into account
the dissolution of gas components. The appearance and disappear-
ance of gas phase are also addressed. Here we propose a further
extension of this formulation to non-isothermal compositional two
phase flow allowing the appearance and disappearance of both phase.

By considering multi-components(nc ≥ 3), the following primary
variable set can be selected.

• the reference phase pressure P,

• the capillary pressure P̃c,

• the gas phase composition xi
G, i ∈ [1, . . . , nc − 1], with (nc)

degrees of freedom,

• and system temperature T.
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To deal with the phase appearance and disappearance of both phases,
one strategy is to extends the saturation-capillary pressure function
by its monotone graph, i.e. by Sw = 1, Pc ∈ [Pc(1),−∞) to deal
with the single liquid phase - two-phase transition, and by Sw = 0,
Pc ∈ [Pc(0), +∞) to handle the single gas phase -two phase transition.
Therefore, we will denote by P̃c the extended saturation-capillary

pressure function and its inverse function by P̃c
−1

.

4.2.2 Treatment of phase appearance and disappearance

The entry pressure Pentry is the critical capillary pressure that must be
applied so that the nonwetting phase appears. One has to distinguish
two cases:
1. Pc ≤ Pentry where SG = 0 and only the wetting phase exists.
2. Pc > Pentry where SG > 0 and both liquid and gas phases exist.

4.3 comparison between different formulations

The local and global NCP formulations have the following common
features.

• For both local and global NCP formulations, a fixed governing
equation and fixed set of primary variable are applied. No pri-
mary variable switching is required if a phase status changes,
which indicates that the same primary variables can be used for
all elements or integration points.

• By formulating the phase change logic as nonlinear complemen-
tary constraints, the rigorous and computationally expensive
phase stability analysis can be avoided. The method will con-
verge directly to either single-phase or two-phase solutions that
corresponds to a solution of the KKT conditions of the mixture
Gibbs free energy minimization problem.

While at the same time, the two formulations have the following
differences.

• A distinguished difference is associated with the primary vari-
able choice. In the global NCP formulation, due to the choice of
natural-variables as primary variable set, the Jacobian matrix of
the mass and energy conservation equations can be computed
with regards to these primary variables quite efficiently, since
the equations can be explicitly expressed in them. While for
local NCP formulation, the mass and energy conservation equa-
tions are implicitly expressed by the overall-composition vari-
ables, which inevitably leads to the usage of chain rule to cal-
culate the derivatives in order to fill the Jacobian matrix. More
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specifically, the chain rule is required to calculate derivatives of
phase saturation, component molar fraction in each phase with
respect to overall component mole fractions, and it will further
increase the computational resources.

• Another difference lies in the way to handle the phase change
problem. In the local NCP formulation, the saturation serves as
secondary variable and is solved on the local level by a nested
Newton iteration. While in the global NCP formulation, the
saturation is treated as primary variable and solved simultane-
ously along with the governing equations, which indicates the
phase change is detected and handled on the global level and
no additional local Newton iteration is required for phase status
identification.



5

E Q U AT I O N O F S TAT E ( E O S )

In this chapter, different Equation of State (EoS) with respect to sev-
eral physical scenarios quantities are presented.

5.1 ideal mixing system

The ideal gas law can be considered as the simplest form of equation
of state.

NG =
PG

RT
(5.1)

If the following assumptions are made that only limited amount of
gas can dissolve in the liquid phase, the Henry’s law can be applied
to obtain the dissolved gas composition in liquid phase. The mathe-
matical formulation of Henry’s law can be written as:

xi
L =

H
NLPi

G

(5.2)

Here H is the Henry constant which depends on the temperature,
and i represents the gas component except the water component. It
can be observed that the correlation in Henry’s law assumes a linear
relationship between the dissolved gas composition and partial gas
pressure. While, on the other hand, Raoult’s law can be applied to
obtain the solubility of solvent in the gas phase. The mathematical
formulation of Raoult’s law can be written as:

xw
G =

Psat(T)
Pw
G

(5.3)

Furthermore, if the presence of capillary pressure cannot be negligi-
ble, Kelvin’s equation is applied to regularize the Eq. (5.3), which is
given as

xw
G =

Psat(T)
Pw
G

exp{−MwPc/(RTρL)} (5.4)

Here Psat(T) represents water saturation pressure depending only on
temperature T. It can be observed that the correlation in Raoult’s law
also assumes a linear relationship the mole fractions and the vapor
pressures of the pure water vapor.

29
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5.2 equation of state (eos) for a brine/CO
2

system

As mentioned before, Henry’s law and Raoult’s law are only valid
for a very low solute solubility and in relatively low pressure and
temperature condition. For a CO

2
-brine system in deep geological

reservoirs, both pressure and temperature values are very high, and
the mutual solubility of CO

2
and water can also be high. Therefore,

Henry’s law and Raoult’s law are not suitable for the EoS of CO
2
-

brine system.
During the recent decades, enormous research have been made in

order to provide accurate Equation of State for brine/CO
2

system.
Among them, the EoS of Duan and Sun [39] provides good estimation
for the solubility of CO2 in water. Spycher et al. [2] proposed a
more complicated correlation which takes into account the solubility
of water in CO2. In this work, the Spycher and Pruess EoS is preferred
due to the mutual solubility model it provided.

The complete EoS of Spycher and Pruess is described in detail in
[40]. First the Redlich Kwong cubic equation of state is solved to
determine the molar volume of the compressible gas phase. Subse-
quently the mutual solubility can be computed via a combination of
polynomials and exponential functions. In a general formulation, the
solubility of the components in a CO

2
-brine system is influenced by

the pressure P, the temperature T of the system and the salinity of
water ssal :

xi
L = xi

L(P, T, ssal) xa
G = xa

G(P, T, ssal) (5.5)

Figure 4 shows that the solubility of CO
2

in the water phase in-
creases fast with rising gas phase pressure up to the saturation pres-
sure, above which it rises with a smaller rate. For temperatures below
the critical temperature Tcrit = 304.15K, the state of the CO

2
changes

from gaseous (below saturation pressure) to liquid. This phase tran-
sition results in a not continuously differentiable sharp break at the
transition point.

In Figure 5, the solubility of brine in the gas phase is plotted. It
decreases sharply with rising gas phase pressure up to the saturation
pressure. When the pressure is getting close to the saturation pres-
sure, the solubility undergoes a smaller decreasing rate. Once pres-
sure is above the saturation pressure, the solubility begin to increase
sharply and then enters a slowly increasing stage.

To calculate the density of CO
2

phase, model from Duan et al.[41]
was applied. The density of CO

2
phase strongly depends on the CO

2

phase pressure. The general format can be written:

ρL(xi
L, T), ρG(PG, T) (5.6)

Figure 6 shows the density of CO
2

with respect to different tempera-
ture. The viscosity of the water phase is computed using a function
by Atkins [42], while for viscosity of the CO2 phase, the approach of
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Figure 4.: The solubility of CO
2

in water phase at different tempera-
ture.

Figure 5.: The solubility of brine in the gas phase at different temper-
ature
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Figure 6.: The mass density of pure CO
2

at different temperature

Fenghour and Vesovic [43] is employed. Figure.7 show the viscosity
of CO

2
phase at different temperature. It can be observed that the

CO2 phase viscosity also highly depends on the phase pressure and
temperature.

5.3 cubic equation of state

More general complex equations of state models were developed for
higher temperatures and pressures and more complex phase compo-
sition system, notably the cubic equation of state which can offer an
accurate description of both liquid and gas phases over a wide range
of pressure and temperature. Among them, Peng-Robinson EoS is
widely used. The standard Peng-Robinson model (PR78) (cf. Peng
and Robinson [27]) for a pure component i takes the following form:

P =
RT

v− bi −
ai(T)

v(v + bi) + bi(v− bi)
(5.7)

where the attraction parameter a(T) and co-volume parameter b in
Eq.(5.7) are calculated from the criterion of criticality:

a(T) = 0.45724α
R2T2

Pcrit
(5.8)

and
b = 0.0778

RTcrit

Pcrit
(5.9)

with the α-function can be expressed as

α = (1 + m(1−
√

T/Tcrit))2 (5.10)
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Figure 7.: The viscosity of CO
2

phase at different temperature

mi =
{

0.37464 + 1.54226ωi − 0.26992(ωi)2

0.3796 + 1.485ωi − 0.1644(ωi)2 + 0.01667(ωi)3

with ωi denotes the acentric factor.
In this work, the Peng-Robinson EoS in terms of reduced parame-

ters properties is applied, where the reduced properties of a fluid are
a set of dimensionless state variables normalized by the fluid’s state
properties at its critical point.

Pr = P/Pcrit, Tr = T/Tcrit (5.11)

thus the parameters can be further expressed as:

A = 0.45724α
Pr

T2
r

(5.12)

B = 0.0778Pr/Tr (5.13)

In a multi-component mixture system, the mixing rules for the pa-
rameters in EoS can be extended as

Amix = ∑
i,j

xixj Ai,j (5.14)

where Ai,j =
√

Ai Aj(1− ki,j) and ki,j is the binary interaction parame-
ter with respect to component i and j.

Bmix = ∑
i

xiBi (5.15)

Then we consider the polynomial form of the Peng-Robinson EoS in
terms of compressibility Z = PV

RT :

(5.16)Z3 − (1− Bmix)Z2 + (Amix − 2Bmix − 3B3
mix)Z

− (AmixBmix − B2
mix − B3

mix) = 0
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Eq (5.16) can be solved analytically by the cubic formula. If multiple
real roots exist, the one giving the lowest Gibbs energy is selected.

The fugacity coefficient can be calculated for component i in phase
α as following:

(5.17)
ln(Φi

α) =
Bκ

α

Bmix
(Zα − 1)− ln (Zα − Bmix,α)

− Amix,α

2
√

2Bi
α

(
2Amix2

Amix
− Bi

α

Bmix,α

)
ln

Zα + (1 +
√

2)Bmix,α

Zα + (1−
√

2)Bmix,α

where
Amix2,j = ∑

i
Ai,jxi (5.18)

Furthermore, the phase densities can thereby be obtained in the fol-
lowing relationship:

NL = Nstd
L [Cw(P + Pc− P0)] (5.19)

NG =
P

ZαRT
(5.20)

where Nstd
L is the molar density of water at standard condition. P0

correspinds to the atmospheric pressure.



6
N U M E R I C S

6.1 discretization

In this work, the standard Galerkin finite element method is em-
ployed for spacial discretization, with a backward Euler fully im-
plicit scheme for the time integration. On each (sub)domain Ω, the
weighted residual method is used to derive the weak form of mass
and energy balance equations Eq.2.3-2.5.

It reads

φ

∆t ∑
α∈{G,L}

∫
Ω

[(
NαSαxi

α

)k+1
−
(

NαSαxi
α

)k
]

ωdΩ

+ ∑
α∈{G,L}

∫
Ω

div
[

Nαxi
α

(
qα + Ji

α

)]k+1
ωdΩ−

∫
Ω

(Fi)k+1ωdΩ = 0 (6.1)

for component based mass balance, and

φ

∆t ∑
α∈{G,L}

∫
Ω

[
(ραSαuα)

k+1 − (ραSαuα)
k
]

ωdΩ

+
(1− φ)ρScpS

t
∆t ∑

α∈{G,L}

∫
Ω

[
Tk+1 − Tk

]
ωdΩ−

∫
Ω

div (λ∇Tk+1)ωdΩ

+ ∑
α∈{G,L}

∫
Ω

div (ραhαqα)
k+1 ωdΩ =

∫
Ω

(QT)k+1ωdΩ (6.2)

for the energy balance. Here ω ∈ H1
0 represents the test function. The

superscripts ·k and ·k+1 are employed here to represent the previous
(tk) and current time step tk+1, and ∆t denotes the actual time step
size (∆t = tk+1 − tk).

The Laplacian-related terms in the above formulations have the
general form of

∫
α divVωdΩ, and they yield second order differentials

in Euclidean space of the respective primary variables. The reduction
of the differentiation order of the Laplacian-related terms can be re-
alised via integration by parts and Green-Gauss theorem as follows:∫

Ω
div VωdΩ =

∫
Γ

V · nΓωdΓ−
∫

Ω
V · ∇ωdΩ (6.3)

where Γ represents the domain boundary ∂Ω, nΓ is the unit outward
normal at the boundary surface.

35
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In this work, a special attention is paid to the discretization of com-
plementary problem (Eq (4.6)). In global NCP formulation, the NCP
are cast as governing equations coupled with mass and energy bal-
ance equations. Here the nodal discretized version for NCP is given
as follows:

C
(

(uP)k+1
)

:=
[

CG((uP)k+1)
CL((uP)k+1)

]
= 0 (6.4)

with

Cα = min

{
(Sα)k+1, 1−

Nc

∑
i=1

(
xi

α

)k+1
}

, α ∈ {G, L}. (6.5)

6.1.1 Linearization strategy

6.1.1.1 Semi-smooth Newton scheme

In non-isothermal compositional two-phase flow problems, nonlinear-
ities can emerge from the conservation equations (2.3)-(2.6), from the
thermodynamic equilibrium equations (2.11)-(2.12), as well as from
the NCP equation (Eq 3.8 and 4.6). Mathematically, these nonlineari-
ties can be categorized into smooth or non-smooth types. In the con-
servation equations and thermodynamic equilibrium formulations,
the function itself, as well its first order derivatives, are continuous
with respect to the primary unknowns. Therefore the nonlinearities
originated from them are considered to be smooth. On the contrary,
the mid function (Eq 3.8) and the minimum functions (Eq 4.6), are
considered to be semi-smooth, as discussed in Section 3.1. For the
two types of nonlinearities, the corresponding linearization strategies
are also different. Smooth nonlinearities can be directly handled by
standard Newton scheme, while a semi-smooth Newton scheme (cf.
Krutle et al.[44]) must be employed to handle the complementary con-
straints. This algorithm is proven to achieve local convergence while
keeping the quadratic convergence rate.

In the local NCP formulation, the local problem (Eq (3.13)) is of
semi-smooth type. Therefore in each time step, semi-smooth Newton
scheme is performed on each integration point, while the standard
Newton method is used to solve the global mass and energy conserva-
tion (Eq (2.3) - (2.6)). In contrast, for the global NCP implementation,
equation system (Eq (4.6)) requires a semi-smooth Newton scheme
on the global level.

Firstly, let us demonstrate how to use semi-smooth Newton scheme
to solve the mid-function of Eq (3.7). First, the notation f (ν) is intro-
duced

f (ν) := mid (ν, g(ν), ν− 1) (6.6)

where

g(ν) = −
nc

∑
i=1

zi(ki − 1)
1 + ν(ki − 1)

(6.7)
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the k-th step of the semi-smooth Newton iteration can be defined as

Jk∆νk = − f (νk) (6.8)

where Jk is a generalized derivative of f at νk, and it represents an
element of B-subdifferential of f :

Jk :=
∂ f (νk)

∂νk (6.9)

Algorithm 2 depicts the way to construct the generalized Jacobian
matrix Jk. Assuming an element jk ∈ Jk is selected, and its i-th line is
defined as jk

i :

Algorithm 2 Construct generalized Jacobian matrix for the mid func-
tion in local NCP

1: if ν < ν− 1 then
2: if ν < g(ν) < ν− 1 then

jk
i =

∂gi(ν
k)

∂νk

3: else
jk
i = 1

4: end if
5: else
6: if ν− 1 < g(ν) < ν then

jk
i =

∂gi(ν
k)

∂νk

7: else
jk
i = 1

8: end if
9: end if

where ∂g(νk)
∂νk is defined as the Jacobian matrix of the Rachford-Rice

equation.
Next, we also define the semi-smooth Newton routine for the global

NCP formulation. In global NCP formulation, the nonlinear comple-
mentarity min-functions are solved along with mass and energy con-
servation equations and thermodynamic equilibrium model, below
we introduce some notations for simplicity:

• u: the vector of primary unknowns for u = [P, SG, xi
G, xi

L, T]T ∈
R(2Nc+3).

• H(u): the mass and energy conservation equations.

• F (u): the fugacity equality model.

F (u) := f i
G

(
PG, T, xi

G

)
− f i

L

(
PL, T, xi

L

)
(6.10)
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• NCP function for gas and liquid phase N

Nα = min (φα(u), ψα(u)) (6.11)

with φα(u) = Sα and ψα(u) = 1−∑Nc
i=1 xi

α, α ∈ {G,L}

In summary, the governing equation system of global NCP formula-
tion can be denoted as:

F(u) :=

 H(u)
F (u)
Nα(u)

 (6.12)

In the rest part of the , ∂Nα(u) to denote the generalized Jacobian
matrix of Nα at a point U, and finally the statement of the semi-
smooth Newton algorithm can be described in Algorithm 3

Algorithm 3 Semi-smooth Newton algorithm for global NCP formu-
lation

1: Define the complementary index sets Ak
α and Ik

α by

Ak
α := {φα(uk) < ψα(uk)} Ik

α := {φα(uk) ≥ ψα(uk)}

2: Select J k
u denotes an element of the B-subdifferential of ∂Nα(u)

such that its i-th component is equal to

J k
u :=

{
∂φα(uk) if i ∈ Ik

α

∂ψα(uk) if i ∈ Ak
α

}
3: The k-th step of the semi-smooth Newton iteration is solved as:

∂H(uk)∆uk = −H(uk)
∂F (uk)∆uk = −F (uk)
J k

u ∆uk = −N (u)

4: The primary variable for the k + 1-th iteration can be updated as:

uk+1 = uk + ∆uk

With ∂H(u), ∂F (u)represent the standard Jacobian matrix of H(u)
and F (u). Note that, only one linear system has to be solved at each
Newton iteration.

6.1.1.2 Construction of global Jacobian matrix

To construct the global Jacobian matrix, the derivatives of governing
equation system with respect to the primary variables are required.
In the global NCP formulation, the derivatives are straightforward
to calculate. Whereas in the local NCP, the derivatives calculation
is very complicated, due to a nested thermodynamic model. In this



6.1 discretization 39

work, the partial derivatives of the secondary variable set uS, with
respect to the primary variable set uP can be obtained by:

∂uS

∂uP =
(

∂F

∂uS

)−1 ∂F

∂uP (6.13)

where function F represents the equation system (3.13), and the square
matrix ∂F

∂uS is the local Jacobian matrix for equation system (3.13).

6.1.1.3 Jacobian matrix reduction

As already mentioned in Section 4.2, in the global NCP formulation,
the Schur complement strategy can be applied on the global Jacobian
matrix, such that the size of global linear system can be minimized.
Special attention has to be paid to the minimum function. Within a
Newton iteration l, the Newton equation for NCP (6.5) can be easily
obtained:

CG :


(δSG)l = −(SG)l if SG ≤ 1−

Nc

∑
i=1

(
xi

G
)

Nc

∑
i=1

(δxi
G) = 1−

Nc

∑
i=1

(
xi

G
)l if SG > 1−

Nc

∑
i=1

(
xi

G
) (6.14)

CL :



(δSG)l = 1− (SG)l , if 1− SG ≤ 1−
Nc

∑
i=1

(
xi

L

)
xi

G
∂ki

∂P
(δP)l + xi

G
∂ki

∂T
(δT)l +

Nc

∑
i=1

(
∂

∂xi
G

(kixi
G))(δxi

G)l = 1−
Nc

∑
i=1

(
kixi

G

)l

if 1− SG > 1−
Nc

∑
i=1

(
xi

L

)
(6.15)

Here δ· indicates the change of primary variable in each Newton
iteration. Function k is defined in Eq (4.8) or (4.9). Substituting
Eq (6.14) and Eq (6.15) into the global Jacobian matrix leads to a
linear system with (Nc + 1) primary unknowns, while the secondary
unknowns can be computed in the local post-processing procedure,
which are summarized as follows

• In the single phase zone, the following linear system needs to
be solved

[
∂H
∂P

∂H
∂xi

G

∂H
∂T

]  δP
δxi

G
δT

 = −H− δSG
∂H
∂SG
− δxNc

G
∂H

∂xNc
G

,

i ∈ [1, . . . , Nc − 1].

(6.16)
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• While in the two-phase zone, the linear equation is given as

[
∂H
∂P

∂H
∂SG

∂H
∂xi

G

∂H
∂T

] 
δP

δSG
δxi

G
δT

 =

−H− δxNc−1
G

∂H
∂xNc−1

G

− δxNc
G

∂H
∂xNc

G

,

i ∈ [1, . . . , Nc − 2].

(6.17)

Therefore, by conducting the Schur complement procedure in global
NCP formulation, the reduced linear system holds the same size as
local NCP formulation, i.e. (Nc + 1). After the linearization of the
global governing equations, a sparse and asymmetric linear system
is assembled and needs to be solved. The BiCGStab solver from the
LIS library [45] is employed with an ILU preconditioner to obtain the
solution.

6.1.2 Interface continuity requirement

When the model domain is heterogeneous, the neighbouring materi-
als can have highly contrasted physical properties, such as the capil-
lary pressure and relative permeability. Therefore, an accurate treat-
ment of the interface condition should be addressed in the model in
order to account for the saturation jump at the material interface.

Let Ω(1) and Ω(2) be the two neighbouring materials characterised
by two different Brooks-Corey type capillary pressure relationships
P(1)

c and P(2)
c . The corresponding entry pressures P(j)

e (j ∈ {1, 2}) are
assumed with: P(1)

e < P(2)
e , i.e. Ω(1) holds a smaller entry pressure.

With the requirement of cell-wise continuity, the capillary pressure
at the interface can be reformulated with the known entry pressure
value, following [46].{

P(2)
c = P(1)

c if P(1)
c ≥ P(2)

e

P(2)
c = P(2)

e if P(1)
c ≤ P(2)

e

In the case of global NCP formulation, the saturation is treated as
primary variable which thereby requires the capillary pressure to be
prescribed at each node. Then in order to account for the saturation
discontinuity, the saturation at the interface should be regulated as
the following form:

S(2)
G = (P(2)

c )−1
[

P(1)
c (S(1)

G )
]

(6.18)

where (P(2)
c )−1 indicates the inverse function of the capillary pressure

relationship at sub-material domain Ω(2). While for the local NCP
formulation, the overall molar fraction (Xi) is chosen as the primary
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variable. A similar strategy is applied to formulate the interface con-
dition for Xi:

Xi,(2) =
N()

L xi,(2)
L

(
1− S(2)

G

)
+ N()

G xi,(2)
G S(2)

G

N()
L

(
1− S(2)

G

)
+ N()

G S(2)
G

(6.19)

While S(2)
G is defined following equation( 6.18). Besides, due to the

fact that saturation is selected as a secondary variable, it is calculated
in local problem by the primary variable P,Xi,T.{

S(2)
G = (P(2)

c )−1
[

P(1)
c (S(1)

G )
]

S(1)
G = S(1)

G

(
P(1), Xi,(1), T(1))

For the local NCP formulation, the interface conditions have already
been incorporated into the local problem and solved on each integra-
tion point, and these conditions are further guaranteed at each node
throughout the global Newton iterations.
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T W O - P H A S E R E A C T I V E T R A N S P O RT M O D E L W I T H
A L O O K - U P TA B L E

In this chapter, the efforts aims at extending the aforedescribed com-
positional two-phase flow model into a coupled two-phase reactive
transport framework based on a look-up table approach. A special
concern is dedicated to the dynamic concrete degradation in the nu-
clear waste disposal.

This chapter was mainly adopted from the publication[47]:

7.1 background

In Switzerland it is planned to store low and intermediate level ra-
dioactive waste (L/ILW) in a deep geological repository using a clay
rock formation as host rock. Such a repository contains large amounts
of cement based materials (concrete, mortars) for waste condition-
ing, tunnel support (shotcrete) and backfill of cavities. The use of
cement-based materials shall provide a stable mechanical and a high
pH chemical environment throughout the repository for a very long
period. Highly alkaline conditions are favorable for conditioning the
waste, as the sorption of radionuclides is enhanced on cement phases
in these conditions, and further corrosion of metals and microbial
degradation of organic wastes is decelerated. The long-term chem-
ical stability of cement materials is further of great importance, as
in the course of concrete degradation cement phases are successively
dissolved which reduces the pH buffering capacity of cement paste
and results in a continuous drop in pH with time. Therefore, charac-
terizing the long-term evolution of such materials is a topic of great
interest, and thus receives continuous attention by the scientific com-
munity.

The spatial and temporal evolution of cementitious materials in a
deep geological repository is influenced by several external and inter-
nal processes involving chemical reactions and water/humidity trans-
port, which are usually tightly coupled with each other. According to
Kosakowski et al.[48] the most important processes controlling con-
crete degradation in a cement-based repository are the ingress of host
rock pore water, concrete carbonation due to the production of CO2

by (bio-)chemical degradation of organic wastes, internal degradation
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of concrete due to the use of reactive silicate aggregates, and interac-
tions between waste materials and cement paste. Note that the lat-
ter processes involve water consuming reactions. All these processes
must be assessed in the context of a repository system to ensure the
long-term safety of nuclear waste storage.

Among these, carbonation is of major concern in cement-based
repositories. The carbonation of concrete is a well investigated phe-
nomena in civil engineering. Current research (c.f. [49] ) shows that
the process is mainly controlled by the transport of gaseous CO

2
, the

atmospheric humidity/water saturation of the concrete, and the ce-
ment composition. Therefore, the carbonation of concrete in a un-
saturated cement repository is normally not limited by the diffusive
transport of CO

2
, but instead it largely depends on CO

2
generation.

Furthermore, internal degradation of concrete due to the presence
of aggregates has a potentially detrimental effect on the cement-based
materials. One of the main type of internal degradation of concrete
due to the reaction of cement phases with aggregates is known as the
alkali-silica reaction (ASR). The kinetics of the dissolution of silicate
aggregates is the main factor that controls the progress of ASR.

Due to the complex interaction of different chemical and physical
processes in the nuclear repository, the numerical model is arising as
a powerful tool to investigate the intricate feedback system on multi-
scales, from single waste package up to a repository level. In this
work, the efforts are dedicated to investigating the concrete degrada-
tion due to two reactive substances: SiO

2
and CO

2
.

Coupling the multiphase flow and reactive transport has already
been investigated over the last decade. Several numerical simula-
tors have been proposed and performed in both reservoir simulation
area or hydrogeochemical modeling area. Among them, GEM-GHG
(Nghiem et al.,[50]), GPRS (Fan et al., [51]) extended the original com-
positional flow simulators to couple the chemical reactive transport
by solving the coupled system in a fully implicit way. On the con-
trary, several reactive transport simulators: PFLOTRAN(Lu and Licht-
ner, [52]), STOMP((White and Oostrom, [53]), TOUGHREACT(Xu
and Pruess, [54]), integrated the multiphase flow model based on an
operator-splitting approach, in which the computations for one time
step are split into a flow problem and a reactive transport problem,
respectively.

To the author’s knowledge, there is rare reactive transport code
available that allows to calculate full coupling between chemical reac-
tions and transport for the complex thermodynamic setup for the con-
crete material we are investigating. Codes like TOUGHREACT[54]
can certainly handle the feedback between chemistry and transport,
but are unable to calculate the thermodynamic setup that includes
several solid-solutions.
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Our calculations utilize the afore proposed compositional two-phase
transport module in the OpenGeoSys software system. Couplings be-
tween transport and chemical processes are achieved via source/sink
terms for gases and water calculated by rate laws for internal degra-
dation of concrete. The complex chemical degradation of concrete
is simplified into a look-up table which provides pH and allows es-
timating changes in rate law parameters in dependence of local car-
bonation degree and internal degradation.

This simplified approach for coupling chemical and transport pro-
cesses allows including spatially heterogeneous chemical conditions
in compositional two-phase transport calculations without the need
to include computationally expensive chemical calculations.

7.2 concrete degradation and creation of look-up ta-
ble

We approximate the complex carbonation and ASR into a fast-to-
calculate look-up table. The look-up table presented in this work is
based on the thermodynamic model of a sulphate-resisting Ordinary
Portland Cement (OPC), similar as the one described by Lothenbach
and Wieland [55]. The exact recipe and the thermodynamic setup of
the utilized concrete is given in[56]. Therefore, only the most impor-
tant information is explained in this work.

The normative composition of the concrete is given in Table 1.
The setup represents a typical mortar used for backfilling void space
in waste packages. All calculations were conducted with the GEM-
Selektor V3 chemical modelling package [57, 58] based on the PSI/Nagra
thermodynamic database.

7.2.1 Hydrated motar

We first calculate the equilibrium composition for the fully hydrated
motar. The equilibrated mortar is the starting composition for the
concrete degradation calculations serving as the basis of the look-up
table. Only two degradation reactions have been considered for this
work: the Alkali-Silica-Reaction (ASR) and the carbonation. Both re-
actions successively dissolve calcium bearing cement phases to form
carbonates in case of carbonation or C-S-H with low C/S ration, resp.
silica gel, in case of ASR. The progress of both processes was calcu-
lated with help of the sequential batch module of the GEM-Selektor
V3 software.

7.2.2 Carbonation

The cement carbonation is simulated by adding the increasing amounts
of CO

2
to the chemical systems. After each step the system was equi-
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Table 1.: Setup and properties of generic mortar[47]
Phase/Material amount [g] Remark
Water (H2O) 169.25

CEM I 52.5 N HTS1 300 Corresponding composi-
tion is given in the Ap-
pendix A.

NaCl 0.1 Represents small amount
of salts in the water

Aggregate (SiO2/quartz) 1830 for the initial equilibra-
tion, aggregate is as-
sumed to be not reactive

total mass 2299.35 g
W/C ratio (adjusted to
give a porosity of 0.076)

0.564 Wieland et al. [56] con-
sidered an additional gas
phase, here fully satu-
rated conditions are as-
sumed

librated and the result of the GEM-Selektor calculation was saved.
Initially all solid phase volumes and the fluid phase volume add up
to 1. With the addition of CO2, portlandite is first dissolved and trans-
formed into calcite according to the following reaction:

Ca(OH)2 + CO2(aq) −−⇀↽−− CaCO3(s) + H2O

While water is released through the reaction. After portlandite is
consumed, C-S-H phases with a high C/S ratio are transformed into
C-S-H with low C/S. This transformation also frees water. Once all
calcium has been leached from the C-S-H phases as a consequence of
reduction of the C/S ratio, successively hydrogarnet, ettrringite, hy-
drotalcite and C-S-H with the lowest possible C/S ratio are dissolved.
The leached calcium is used to form calcite. The dissolution of the
AFm and AFt phases also releases aluminium which serves as the
basis to form zeolites. Ettringite dissolution leads to the formation of
sulfates, in this case gypsum, and magnesium is used up due to the
transformation of C-S-H into M-S-H. Excessive silica resulting from
the C-S-H dissolution gives rise to the precipitation of SiO2, which is
shown in the model as the formation of amorphous silica or quartz.
The final, completely carbonated system is composed of largely un-
affected quartz aggregates, considerable amounts of carbonates and
minor amounts of clay minerals.
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7.2.3 ASR

In our thermodynamic setup the ASR is mainly driven by the dissolu-
tion of the quartz aggregates. The released silica reacts with calcium
leached from the cement phase to form C-S-H solid solutions.

1.667 Ca(OH)2 +SiO2 +0.433 H2O −−⇀↽−− (CaO)1.667 SiO2 (H2O)2.1(s)

As a consequence of progressing silica release, silica is continu-
ously bound by C-S-H and therefore, the C/S ratio of the C-S-H phase
decreases until a tobermorite composition is formed. The general
sequence of dissolving cement minerals and precipitated secondary
phase is very similar to the carbonation reaction, except for the two
main differences: Firstly, during carbonation, C-S-H is dissolved and
carbonates are formed, whereas for ASR carbonates do not partici-
pate in any reactions and C-S-H is the main reaction product. Sec-
ondly, for the ASR, zeolites will be transformed to clay phases in the
very last degradation stage. Such transformation is not present in the
carbonation reactions.

7.2.4 Chemical and physical changes upon concrete degradation

The combined effects of carbonation and ASR on the chemical and
physical changes of the degradation of concrete are further analyzed.
For each pair of CO

2
and SiO2 the, we extract the results from the

GEM-Selektor model in terms of pH in pore water, on porosity, wa-
ter volume and quartz dissolution rate. The look-up table is further
visualized as 3-D surface plots as shown in Figure.8:

The pH in the system decreases during concrete degradation, for
both carbonation and ASR. In the initial hydrated concrete, the pH is
12.9 whereas the pH of degraded concrete only reaches 10.1. At the
final degradation stage by carbonation, the pH drops further to 8.3 as
a consequence of the presence of clay phases.

The quartz dissolution rate was calculated as described by Wieland
et al.[56] . The dissolution kinetics of siliceous sand (aggregate) can be
expressed in terms of a (simplified) pH-dependent rate in accordance
with [48] which holds in neutral and alkaline conditions.

After reaction of the corresponding moles of SiO2 and CO
2
, the

volume of the liquid phase was calculated which was used as the
source/sink terms for liquid in the governing equation of multi-phase
transport process. The difference in fluid volume before and after
adding CO2 and SiO2 revealed the amount of mass added into or
subtracted from the liquid volume. The source/sink terms of wa-
ter are in principle the directional derivatives of the look-up table.
Numerical differentiation can be obtained e.g. by finite difference
schemes.
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(a) pH (b) porosity

(c) fluid volume (d) quartz dissolution rate

Figure 8.: 3D surface plots for the combined effects of CO2 addition
(carbonation) and SiO2 addition (ASR) on pH (a), porosity
(b), fluid volume (c) and quartz dissolution rate (d).[47]

The porosity was calculated based on the changes of cumulative
solid phase volume fractions with respect to the initial volume. The
position and extension of the porosity changes are uncertain and
strongly depend on the mineral phases included and the adopted
thermodynamic data.

7.3 the coupling strategy

The coupling strategy for the look-up table of the complex carbona-
tion and ASR with the two-phase multi-component transport model
is depicted in Fig. 9. The table provides pH, porosity, water consump-
tion/release and kinetic rates for dissolution of (quartz) aggregate on
dependence of CO2 and SiO2 reacted in a unit volume. Carbonation
was calculated based on the accumulated amount of CO2 that reaches
on a node/volume by transport, while ASR was calculated based on
the dissolution of SiO2 with the kinetic rates provided by the look-up
table.

Our approach for incorporating the look-up table into the two-
phase multi-component transport model was accomplished via source
and sinks term and updates of porosity values. The source/sink term
represents the production/consumption rate of one particular compo-
nent due to chemical reactions. For each Newton iteration a call was
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Figure 9.: Schematic illustration of the coupling strategy between two-
phase multi-component transport and chemical processes
via the look-up table approach[47]

made to the look-up table to define the desired values. The total
cumulatively consumed CO2 and dissolved SiO2 concentrations are
given as input values from the look-up table, while a bi-linear interpo-
lation method is employed to output the chemical system information
based on the look-up table.

The detailed coupling procedure is explained in [47].
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M O D E L A P P L I C AT I O N S

After briefly sketching the numerical algorithms in the previous chap-
ters, we will now compare the physical accuracy and the compu-
tational efficiency of the presented numerical models for fluid flow
in porous media. In this chapter, the verification of the nonisother-
mal compositional two-phase flow model is performed by simulating
problems with literature results; in addition, a benchmark exercise
for the two-phase flow and reactive transport modeling of the con-
crete degradation is proposed to verify and validate the look-up table
coupling methods.

In the first part, in order to analyze the accuracy and computa-
tional performance of the aforementioned numerical formulations,
two groups of benchmarks have been adopted. The first group is
dedicated to simulate an idealize system. The first benchmark repro-
duces the drying process of a porous media saturated with water by
subjecting to a dry gas phase, where gas phase appearance and liquid
disappearance are involved (section 8.1.1). In the second group, the
non-ideal mixture system is taken into account under high pressure
and temperature condition. A major interest is focused on the com-
plex phase behavior. Three different cases are presented in the context
of CO

2
storage. First, a 2-D CO

2
injection process are investigated

(section 8.2.1). The second benchmark goes further by considering
a non-isothermal radial symmetric CO

2
injection problem in an an-

isotropic and heterogeneous saline aquifer (section 8.2.2). While the
last benchmark is dedicated to simulating a multicomponent trans-
port problem asscociated with the injection of CO

2
and multiple im-

pure gas components (section 8.2.3).
In the second part, a 1-D reactive transport benchmark is proposed

by considering the two main chemical reactions which control the con-
crete degradation: ASR and carbonation. We contrast three different
configurations of the benchmark to explore the pattern of competi-
tion between ASR and carbonation in the long-term degradation of
concrete. The numerical model derived from the look-up table ap-
proach is compared against a full reactive transport code to validate
its accuracy and efficiency.

49
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implementation

All numerical experiments are conducted with the OpenGeoSys soft-
ware (cf. Kolditz et al. [24], Huang et al. [25]. Both fixed and adaptive
time stepping features are employed. With the later case, the succes-
sive time step size is doubled when the number of Newton iterations
in the previous time step is less than 7, and it will be cut into half if
more than 15 iterations are required. Meanwhile, the nonlinear solver
convergence criteria for the L2-norm of the residual vectors are set to
10−14 for the local problem and 10−7 for the global one. Note that
local tolerance must be lower because solution accuracy of the local
problem is crucial for the convergence on global level. All bench-
marks are performed on a computer equipped with 8 GB of memory
and an Intel(R) Core(TM) I5-3230 processor @2.6 GHz. It is noted
although the OpenGeoSys software has the capability of running par-
allel simulations (cf. Wang et al. [59]), only single-CPU core serial
computation is performed here, so that the time spent in different
parts of the simulation can be more directly analyzed.

8.1 benchmarks for idealize system

8.1.1 Benchmark I: Drying by gas injection

In order to investigate the performance of the two formulations re-
garding phase change problem, we consider a benchmark including
gas appearance and wetting phase disappearance by injection of dry
gas. This benchmark is proposed by Masson et al. [28] in the con-
text of simulating the drying process of a geological nuclear waste
repository.

The porous media is represented by a horizontal 1D domain with
a length of 1000 m. The temperature is fixed to T = 360 K. The vapor
pressure is defined by the following relationship ([28]):

Psat(T) = P0 exp{13.7− 5120/T} (8.1)

with P0 corresponds to the atmospheric pressure (101325 Pa). The
relative permeability and the capillary pressure are again given by the
Van Genuchten model. Note that in order to account for the liquid
phase disappearance, the capillary pressure is extended linearly to
Sw = 0 between (Sw,0, Pc,0) = (P−1

c (Pc,0), Pc,0) and (Sw,1, Pc,1) = (0, 2Pc,0)
with Pc,0 = 4Pr (Pr = 1× 105 Pa). Figure 10 gives the regularized van
Genuchten curve for the relation of saturation and capillary pressure.
The liquid and gas phases are represented as mixtures of water(·w)
and air(·air) components. The Henry law is applied to describe the
solubility of air in the water with the Henry constant fixed to Hair =
108 Pa, and the Fick diffusion can be neglected due to the dominant
Darcy convection.
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Figure 10.: The regularized van Genuchten curve for the relationship
of liquid saturation and capillary pressure.

Initial condition
The initial conditions are defined by a pure water liquid phase:
Gas phase pressure: PG = 40× 105 Pa
Liquid phase pressure: PL = 40× 105 Pa
Capillary pressure: Pc = 0 Pa
Molar fraction of air in liquid phase: xair

L = 0
Molar fraction of water in liquid phase: xw

L = 1
Boundary condition

At the left end, the Dirichlet boundary conditions are applied with
the same as the initial conditions:
Gas phase pressure: PG = 40× 105 Pa
The capillary pressure: Pc = 0 Pa
The molar fraction for both components read:

xair
L = 0 xw

L = 1

At the right part, the gas phase (SG = 1) is injected with a mixture
of air and water vapor which includes 0.5 % water vapor, which cor-
responds to a capillary pressure (Pc ≈ 6× 108 Pa)
Gas phase pressure: PG = 50× 105 Pa
The capillary pressure: Pc = 6× 108 Pa
The composition of the gas phase is composed of:

xair
G = 0.9995 xw

G = 5× 10−4
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Table 2.: The parameters used for the benchmark case of drying by
gas injection

Parameter Symbol Value Unit
Water density ρw 1× 103 kg m−3

Molar mass of water Mw 18× 10−3 kg mol−1

Molar mass of air Mair 29× 10−3 kg mol−1

Henry constant H 1× 108 Pa
Viscosity of gas µG 1.8× 10−5 Pa· s
Viscosity of water µL 1× 10−3 Pa· s
Diffusion coefficient Dh

L 3× 10−9 m2 s−1

Porosity φ 0.15 −
Intrinsic permeability K 10−12 m2

Temperature T 360 K
van Genuchten parameter n 4 −
van Genuchten parameter Pr 1× 105 Pa
Residual saturation SL,res 0.4 −

8.1.1.1 Benchmark configuration

The geometry is uniformly discritized into 100 elements, and the sim-
ulation is run over the time span of 40 years. Adaptive time stepping
is applied for the simulation with an initial time step of 1× 103 sec-
onds, a maximum time step of 1× 105 seconds until the gas reaches
the left end (t=1 year), and a maximum time step of 1× 107 seconds
in the remaining of the simulation.

The parameters used for this benchmark case are listed in Table 2

8.1.1.2 Results

Figure.11 exhibits the gas saturation front at different times obtained
with the local NCP formulation. The simulated results are also com-
pared against reference data from Masson et al. [28]. Our simulation
results fit quite well with the reference data. It can be observed that
the gas hydrodynamic front propagates from right to left at the be-
ginning of the simulation due to the gradient of the pressure, and
after around 1 year it reaches the left end of the domain. Next, at the
vicinity of the injection boundary, the liquid saturation decreases to
around 0.4 which corresponds to the residual saturation. That can be
explained by the immobility of the liquid phase. The liquid saturation
keeps decreasing due to the vaporization of the water and injection
of the dry gas. However, that process is observed to be much slower.
After around 5 years, the liquid phase begins to disappear from the
vicinity of the injection boundary. At the end of simulation (40 years),
half of the domain is composed of single gas phase.
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(a) Liquid saturation profile at times t = 0.1, 0.25, 0.5, 1, 5 years
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Figure 11.: Liquid phase saturation profile at different time obtained
by local NCP formulation, compared against reference
data reported in [28]
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Table 3.: Comparison of the performance between both NCP formu-
lation and PVS scheme. Here, n corresponds to the number
of time steps required to reach steady state, tCPU is the to-
tal CPU time required to reach simulation end and nNewton

is the overall Newton iterations, while avgNewton represents
the average Newton iterations required for each time steps.

Global NCP Local NCP PVS[28]
tCPU [s] 679.56 792.99 -
n [−] 223 216 172

nNewton [−] 969 919 1477

avgNewton [−] 4.345 4.25 8.587

8.1.1.3 Numerical comparison

We compare as in the previous benchmark case the numerical perfor-
mance with respect to different formulations. In Table 3, a detailed
comparison is presented with respect to the total number of time
steps, overall Newton iterations, and the CPU time which both nu-
merical formulations required to reach the simulation time end on a
mesh with 160 elements. For reference, the numerical behaviors of
PVS scheme are also summarized in Table 3.

It can be observed from Table 3 that both the NCP formulations
behave roughly the same efficiency in terms of Newton convergence
with a slightly better performance of local NCP formulation. How-
ever, local NCP formulation is 10 % slower in terms of total CPU
time compared with the global one. Both NCP formulations demon-
strate better behavior than PVS scheme in terms of the Newton con-
vergence, since less overall/average Newton iterations are required
by NCP formulations.

8.2 benchmarks for non-ideal system

The previous benchmark is focused on the idealize system, now we
increase the complexity by taking the non-ideal mixture into account.
This is numerically more difficult than the idealize system due to
the fact that all fluid properties and coefficient functions are tight
coupled and highly nonlinear. It is of great interest to investigate the
numerical performance of both formulations for the complex phase
behavior.

8.2.1 Benchmark II: Injection of CO2 into water saturated domain

In this section, we consider a benchmark case related to the injection
of CO

2
into a deep aquifer initially saturated with pure water for the

purpose of permanent CO
2

geological sequestration. This benchmark
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Figure 12.: The spatial domain of the radially symmetric CO
2

injec-
tion problem.

is firstly proposed by Neumann et al. [15], an extensive literatures
also reported the simulation results for this case, here we refer to [60,
61, 62]. In this work, the same settings and parameters reported in
[60] are applied.

Typically, CO
2

is injected in its super-critical state where its prop-
erties fall between a gas and a liquid. More precisely, its viscosity is
lower than a gas and the density is higher than a liquid [60]. Conse-
quently, the ideal gas law is no longer applicable for this case. On the
other hand, regarding the solubility of CO

2
, the high pressure and

temperature condition of the reservoir leads the Henry law invalid
as well. Therefore, the equation of state discussed in section 5.2 are
applied.

The aquifer is located under 800 m depth, which assures the super-
critical condition of the injected CO

2
. The geometry can be repre-

sented by a 2D rectangle domain with 600 m length and 100 m height,
as Figure 12 shown. The CO

2
is injected from the left bottom corner

while a hydrostatic pressure distribution boundary is imposed on the
right part. For the simplicity, in the below, we use (·CO

2) and (·w) to
denotes the component of CO

2
and water, respectively

Initial and boundary conditions
At the beginning of the simulation, the domain is fully water-saturated
with no CO

2
in the liquid phase. The initial conditions read: The gas

phase pressure is assumed to be equal to the liquid pressure which
holds a hydrostatic pressure conditions in the domain:

PG,ini = 101325 + (900 − z)ρwg Pa (8.2)

with z is the z-axis coordinate.
The molar fraction for each component reads:

xCO
2

G,ini = 0 xCO
2

L,ini = 0 (8.3)

A constant injection flux is imposed on the inflow boundary part:

qCO
2

in = 0.04 kg m−2 s−1 (8.4)

Pure water and hydrostatic pressure distribution on the outflow bound-
ary

xCO
2

L,out = 0, PG,out = PG,ini (8.5)
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Table 4.: The parameters used for the 2-D CO
2

injection problem.
Parameter Symbol Value Unit
Molar mass of water Mw 18× 10−3 kg mol−1

Molar mass of CO
2

MCO
2 44× 10−3 kg mol−1

Diffusion coefficient DCO
2

L 2× 10−9 m2 s−1

Porosity φ 0.2 −
Intrinsic permeability K 10−12 m2

Temperature T 313.15 K
Brooks-Corey parameter λ 2 −
Brooks-Corey parameter Pentry 1× 103 Pa
Residual saturation SL,res 0.0 −
Residual saturation SG,res 0.0 −

8.2.1.1 Model configuration

The simulation domain is uniformly discretized into 9600 (240 × 40)
quad elements. The simulation is run over a time span of 100 days.
An adaptive time stepping control is applied for the whole simulation,
with an initial time step size (∆t) of 500 seconds.

All the parameters used for this benchmark are listed in Table 4.

8.2.1.2 Simulation results

The simulation results of this benchmark case are plotted in Figure 13,
which are obtained by local NCP formulation. Each figure depicts the
CO

2
phase saturation distribution after 7, 20, 65 days. In comparison

with the results reported in [60], a very good agreement can be ob-
served.

Shortly after the injection of CO
2

(after 500 seconds), a free gas
phase starts to appear (correspond to a gas saturation of 0.05). The
CO

2
propagates upwards until it reaches the top of the domain driven

by the gravitational force. Then the CO
2

keeps accumulating below
the top of the domain and starts to migrates to the outflow boundary
driven by the advective forces. After around 15 days, it is observed
that the gas saturation at the vicinity of the injection boundary be-
comes 1 which indicates a complete dry out of liquid water and the
disappearance of the liquid phase. However, such phenomena are
not observed in [60]. The difference might come from the different
choice of primary variables, or different capillary pressure regular-
ization scheme adopted for Brooks-Corey model when gas saturation
approaches 1.

8.2.1.3 Formulation Comparison

Differ with other reference simulations, in this work, the model is
run in single core without parallel. A special attention is paid to the
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Figure 13.: Gas phase saturation profile after the CO
2

injection of 7,
20, and 65 days

numerical performance between local and global NCP formulations,
since the results obtained by both formulations are very similar to
each other. The PPC formulation adopted in [15, 60] are also com-
pared as a reference. The detailed comparison are listed in Table 5.

It can be observed that, the PPC formulation consumes the least
CPU time compared with the both NCP formulation, that can be ex-
plained by the fact that, in PPC formulation, saturation is only de-
pendent on capillary pressure, which relaxes the nonlinearity signifi-
cantly, and save computational time thereby. However, it requires the
most average Newton iteration per time step, which indicates a worst
converge behavior.

While with respect to the comparison between the global and local
NCP formulation, it can be observed from Table 5 that global NCP for-
mulation consumes approximately 20 % less CPU time. However, lo-
cal NCP formulation delivers a slightly better numerical performance
compared to the global one. Since it requires the least averaged New-
ton iteration per time step, and a larger averaged time step size is
allowed in the local NCP formulation.
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Table 5.: Comparison of numerical behavior between two NCP formu-
lations and PPC [60, 62] approach for the simulation of 2-D
CO

2
injection benchmark over a 9600-element mesh. avg∆t

indicates the averaged time step size.
Global NCP Local NCP PPC

tCPU [s] 15195 18169 13975

avg∆t [s] 4027.97 4056.3 3841.7
nTimestep [−] 2145 2130 2249

nNewton [−] 7400 7200 8872

avgNewton [−] 3.45 3.38 3.9

8.2.2 Benchmark III: Cold CO2 injection into a saline aquifer

In CO
2

geological storage, thermal effect is a very important factor,
due to the temperature dependence of the fluid density, viscosity and
mutual solubility relationships. These properties are crucial to de-
termine the flow and transport processes. From modeling point of
view, such functions are highly nonlinear which impose numerical
challenge for the simulation. Therefore, in this section, a special in-
terest has been focused on a non-isothermal radially symmetric CO

2

injection problem by considering a benchmark proposed in Zhao et
al. [63].

In this benchmark, the simulated geometry is a heterogeneous an-
isotropic sandstone aquifer with a thickness of 100 m, which is lo-
cated 1300 m depth under the surface. A 2-D axissymmetric mesh is
adopted to simulate the full 3-D radial symmetric problem.

Supercritical CO
2

is injected into the aquifer at 20 m distance from
the bottom of the aquifer. The injection temperature is 32

◦C and the
injection rate is 15.85 kg/s. The injection period is 10 years.

The porosity and intrinsic permeability are defined following the
original benchmark setting:

φ = 0.4e−0.5z + 0.05 (8.6)

kx = 1022.58φ−18.15; kz = kx/4 (8.7)

where φ is porosity, z is depth (km), kx and kz is the intrinsic perme-
ability in the horizontal and vertical directions, respectively.

The fluid properties and porous media parameters used for the
simulation are listed in Table 6.

8.2.2.1 Model Configuration

The geometry domain is uniformly discritized into 1× 104 quad el-
ements. In the horizontal direction, a total of 500 grid elements are
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Table 6.: Parameters applied in the cold CO
2

injection problem
Parameters Name Symbol Value Unit
Thermal conductivity
of porous medium λpm 2.51 W (m K)−1

Heat capacity of the soil grains cs 920 J (kg K)−1

Density of the soil grain ρs 2600 kg m−3

Residual saturation non-wetting Sres,n 0.05 −
Residual saturation wetting Sres,w 0.3 −
van Genuchten parameter Pr 1.961× 104 Pa
van Genuchten parameter n 1.84162 −
van Genuchten parameter m 0.457 −

used, including the injection well with a radius of 0.3 m. While in the
vertical direction, the domain is divided into 20 layers.

The simulation is run over a time span of 10 years. Adaptive time
stepping control is applied for the simulation with a initial time step
size of 500 seconds.

The initial and boundary conditions for this simulation are summa-
rized as follow:

Initial condition
At the beginning of the simulation, the aquifer is fully saturation with
brine:

SL,ini = 1, xCO
2

L,ini = 0 (8.8)

The initial temperature for the aquifer is set to be constant distribu-
tion:

Tini = 334.45 K (8.9)

The initial pressure for the aquifer domain is following the hydro-
static distribution:

PL, ini = 101325 + (1400− z)ρw · g Pa (8.10)

with z is the z-axis coordinates.
Boundary condition

Neumann boundary condition is imposed on the injection well:

qCO
2

inj = 15.85 kg s−1 (8.11)

The temperature of injected CO
2

is:

TCO
2

inj = 305.15 K (8.12)

On the right hand side, a hydrostatic distribution is imposed for the
liquid phase pressure, while the gas phase saturation and dissolved
CO

2
molar fraction keep the same as initial condition

Pout = 101325 + (1400− z)ρw · g Pa, SL,out = 1, xCO
2

out = 0.0 (8.13)
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8.2.2.2 Results

CO2 migration
The injected CO

2
initially spreads laterally away from the injec-

tion well, and buoyancy forces simultaneously lead CO
2

to moving
upward until it arrives at the top of the aquifer. Then CO

2
accumu-

lates there and is forced to migrate laterally, as the Figure 14a. Some
CO

2
dissolves in the formation water during CO

2
migration. More

CO
2

dissolves in the vicinity of the injection well because amounts of
cold CO

2
govern the temperature distribution there, as the Figure 14b.

The heterogeneity of the aquifer results in the convective mixing oc-
curring after the injection stops, which will be detailed discussed in
the latter part.

Temperature evolution
CO

2
migration in the aquifer is accompanied by heat transport pro-

cesses. These thermal processes control the temperature distribution
in the aquifer. Here we focus on studying the characteristics of tem-
perature distribution after the cold CO2 injection.

The temperature drops below the CO
2

injection temperature around
the injection well (from 0.3 m to 70 m) and the maximum value of the
temperature drop reaches 0.7 K at 10 years as Figure 14c shown. This
is mainly due to the Joule-Thomson cooling effects[64] and endother-
mic water vaporization. Then heat conduction which is due to the
temperature gradient leads the gradual increase of temperature away
from the injection well (from 70 m to 250 m). In the region with
larger radius, the temperature rises to exceed the initial value. The
maximum value of the temperature increase reaches approximately 1

K at 10 years. The reason is that exothermic CO
2

dissolution occurs
near the CO

2
plume front. Furthermore, heat conduction increases

the temperature of the surrounding zone, where there is no CO
2

dis-
solved. Based on the evolution of temperature during the CO

2
injec-

tion, the aquifer can be divided into three distinguished zones: tem-
perature drop zone (T < 305.15 k ), temperature transition zone (from
T=305.15 K to T=333.45 K), and temperature rise zone (T>333.45 K).
These three zones vary spatially and temporally as the migration of
CO

2
.

Observation points
We further pick up three observation points(A,B,C) which are located
on the top of the aquifer and in the direction away the injection well
with the distance of 50 m, 100 m, 500 m, respectively. We plot the
temporal evolution of temperature and saturation on these observa-
tion points in Figure 15 and compared against the results reported in
Zhao et al.[63] which is generated by software TOUGH[65]. A good
agreement can be observed between each other.

When CO
2

plume arrives at observation point A (r = 50 m) at about
90 days, phase change happens and gas saturation starts to increase
dramatically. Meanwhile, the temperature increases slightly. The



8.2 benchmarks for non-ideal system 61

(a) Gas saturation distribution

(b) Dissolved CO
2

molar fraction in liquid phase

(c) Temperature

Figure 14.: Results of the Synthetic cold CO
2

Injection Problem after
around 10 years
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Figure 15.: Evolution of temperature, CO2 saturation at different ob-
servation points



8.2 benchmarks for non-ideal system 63

maximum value of the temperature increasing reaches 1.2 K (cf. Fig-
ure 15a). From 90 days to around 600 days, the temperature remains
stable with only a slightly drop, while saturation keeps increasing.
After 600 days, the temperature undergoes a dramatic drops with
T = 316.15 K at 10 years.

It can be also observed that the temperature and saturation evo-
lution at observation point B (r = 100 m) is similar to the trend of
observation point A. While for observation point C (r = 500 m) which
is a bit far away from injection well, a different pattern has been ex-
hibited. After the CO

2
plume arrives (at around 1 year), the gas phase

emerges and the gas saturation starts to increase as the previous ob-
servation points. However, the temperature only increase slightly, the
maximum increase of temperature is around 1 K. Furthermore, at the
end of CO

2
injection (10 years), the temperature doesn’t drop below

the initial temperature of the aquifer, which is owing to the fact that
the CO

2
has already been heated during the long distance migration.

Convective mixing
Convective mixing is a common phenomena and plays an impor-

tant role in CO
2

sequestration. There is convective mixing that occurs
because the density of brine saturated with CO

2
is approximately 1

% more than the unsaturated brine.
During the injection period, the convective mixing can hardly been

seen due to the fact that the CO
2

displacement is the dominant mech-
anism. However, within the post-injection period, the CO

2
diffusion

and convective mixing become more and more important, especially
for a long-term CO

2
migration and storage. The convective mixing be-

comes the primary mechanism with more CO
2

dissolved in the brine.
Moreover, the heterogeneity and anisotropy of the saline aquifer fur-
ther enhance the convective mixing occurring after the injection stops.

After around 40 years, a distinguished convective mixing phenom-
ena can be observed from the dissolved CO

2
molar fraction distribu-

tion, which indicates that in the long term CO
2

migration and stor-
age, the dominant mechanism for dissolution of CO

2
is convective

mixing rather than the pure diffusion. Figure.16 depicts the the dis-
tribution of dissolved CO

2
molar fraction, liquid phase density and

temperature at 300 years. It is shown that the convective mixing has
significant effect on the local temperature distribution in the aquifer
formation.

8.2.3 Benchmark IV: Co-injection CO2 and Impurities in CCS application

A remarkable aspect of the subsurface storage of CO
2

is the purity
of CO

2
. In a realistic scenario, a CO

2
product gas contains contami-

nant gas such as N2, O2 H2S, SO2. which might lead to unexpected
influence during the operation of storage.
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(a) Distribution of dissolved CO
2

molar fraction after 300 years

(b) Distribution of density of liquid phase after 300 years

(c) Temperature distribution after 300 years

Figure 16.: Results of the Synthetic cold CO
2

Injection Problem after
300 years
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Figure 17.: The geometry for 2-D problem

In this section, we increase the complexity by simulating a bench-
mark of CO

2
injection associated with the presence of multiple im-

pure gas components. The benchmark was proposed in Sin et al.[61]
in the context of the carbon capture sequestration. It highlights an ac-
curate calculation of thermodynamic properties of the involved mix-
ture required by the model to capture the strong interaction between
different components under a high pressure and temperature condi-
tion.

The geometry is represented by a 100 × 10000 m rectangle domain
which is located at 1100 m depth under the surface, as Figure 17

shown. CO
2

is injected at a constant rate of 10 kg ·s1 through the
left boundary, together with multiple impurity gas components (N2

and O2). At the beginning, the aquifer is fully saturated with pure
water. We assume a constant temperature at 50

◦C. For the Dirichlet
boundary on the right hand side, hydrostatic pressure for the water
phase and zero pressure for the CO

2
phase is applied. While the top

and bottom of the domain have no-flux boundary conditions. The
initial and boundary conditions are summarized as follows:
Initial condition
At the beginning of the simulation, the aquifer is fully saturation with
water:

SL,ini = 1, xCO
2

L,ini = 0, xN2
L,ini = 0, xO2

L,ini = 0 (8.14)

The initial temperature for the aquifer is set to be constant distribu-
tion:

Tini = 323.15 K (8.15)

The initial liquid phase pressure for the aquifer domain is following
the hydrostatic distribution:

PL,ini = 101325 + (1100 − z)ρw · g Pa

Boundary condition
The CO

2
is injected from the left hand side with a constant injection

rate of 10 kg s−1.
qCO

2

inj = 10 kg s−1 (8.16)

A Dirichlet boundary condition is applied on the left hand side bound-
ary for the overall molar fraction of each gas component:
zCO

2 = 0.95, zN2 = 0.04, zO2 = 0.01
While on the right hand side, a Dirichlet boundary condition is im-
posed for liquid phase pressure, saturation and overall molar fraction
which are the same as the initial condition.
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Table 7.: Parameters used for 2-D problem of co-injection CO
2

and
impurities.

Parameter Symbol Value Unit
Water density ρw 1× 103 kg m−3

Molar mass of water Mw 18× 10−3 kg mol−1

Molar mass of CO
2

MCO
2 44× 10−3 kg mol−1

Molar mass of N2 MN˙2 28× 10−3 kg mol−1

Molar mass of O2 MO2 32× 10−3 kg mol−1

Viscosity of gas µG 2.84× 10−5 Pa· s
Viscosity of water µL 5.49× 10−5 Pa· s
Diffusion coefficient DL 3.36× 10−9 m2 s−1

Diffusion coefficient DG 1.95× 10−7 m2 s−1

Porosity φ 0.2 −
Intrinsic permeability K 10−12 m2

Temperature T 323.15 K
Brooks-Corey parameter λ 2 −
Brooks-Corey parameter Pb 1× 105 Pa
Gas residual saturation SG,res 0.05 −
Liquid residual saturation SL,res 0.15 −

The thermodynamic properties of CO
2

and impurity mixtures are
simulated based on the Peng-Robinson EoS discussed in Chapter 5.
Because H.Li [66] suggest PR-EoS can provide accurate approxima-
tion for the vapor liquid equilibrium properties of binary CO

2
-mixtures

(e.g CO
2

N2 or O2). The calibration routine adopts the algorithm pro-
posed in Chapter 3. Note that the water phase density is given by
IAWPS [33].

8.2.3.1 Model configuration

The domain is uniformly discretized into 3× 104 quad elements. The
simulation is run over a time span of 10 years. An adaptive time step-
ping control is applied for the whole simulation, with an initial time
step size (∆t) of 250 seconds. The parameters used for this benchmark
is listed in Table 7.

8.2.3.2 Simulation results

It can be observed from Figure.18, at the beginning of the simula-
tion, the injected CO

2
and impure gas components rise up due to the

density difference and buoyancy force. Then the impure CO
2

plume
spread along the top of the aquifer.

Figure.19 depicts the temporal evolution of molar fraction profile
with respect to different components at 2, 6 and 10 years. It can be
observed that, N2 and O2 dominates the leading edge of the plume
while CO2 follows in the rear. While the molar fraction of N2 and O2
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(a) Nonwetting phase saturation distribution at t=2 year

(b) Nonwetting phase saturation distribution at t=4 year

(c) Nonwetting phase saturation distribution at t=6 year

(d) Nonwetting phase saturation distribution at t=8 year

(e) Nonwetting phase saturation distribution at t=10 year

Figure 18.: Nonwetting phase saturation distribution evolution at dif-
ferent time.
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in the leading edge is much higher than the compositions of the in-
jected mixture, with xN2

G and xO2
G equal to 0.87 and 0.15, respectively.

This is mainly because of the larger dissolution of CO
2

compared
with that of N2 and O2. More CO

2
would dissolve in the water at

the leading edge of the plume, resulting in higher N2 and O2 molar
fraction in the gas phase. While the preferential solubility of O2 com-
pared to N2 further explains that the peak of N2 plume is a little bit
ahead of that of O2 plume. The distribution range of N2 plume is
increasing as time. This is mainly due to the lower viscosity of the
N2. Similar phenomena can be observed for the O2 plume.
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Figure 19.: Molar fraction profile of multiple gas components at t=2,
6, 10 years
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8.3 benchmarking the look-up table approach

This section presents a reactive transport bench- marking exercise
which aims at specifically targeting the pivotal question: how good
and under which (transport) conditions the look-up table approach
resembles the simulation results of a full coupled two-phase reac-
tive transport model. The exercise is based on a description of the
long term degradation of the concrete. We compared the newly pro-
posed look-up table based model OpenGeoSys-MP-LT with the well-
established reactive transport code OpenGeoSys-GEM (Kosakowski
and Watanabe, [67]).

This part are mainly adopted from [47]

8.3.1 Conceptual of the application

Atmospheric degradation of concrete under an unsaturated condition
is a complex process that involves intricate couplings between trans-
port of both liquid and vapour water, CO

2
and air(N2, O2) in gas and

liquid phases, chemical reactions involving cement hydrates with the
dissolution of CO2 in the water phase. Porosity change is also asso-
ciated with the concrete evolution. In this work, we dedicate to in-
vestigating an accelerate atmospheric degradation of concrete. While,
two dominated and competing chemical reaction processes: carbon-
ation and ASR, are taken into account. A look-up table is set up for
the concrete degradation by only considering two reactants: SiO

2
and

CO
2
.

8.3.2 Model configuration

As Figure.20 shows, the geometry of the benchmarks is represented
by a 1D concrete structure. We assume a in-diffusion boundary for
the concrete structure a strongly CO

2
dominated gas phase with a

concentration of 39.43 mol m−3 (0.889e-3 kg m−3), which corresponds
a much faster carbonation than under atmospheric conditions (i.e. ac-
celerated carbonation). The concrete structure is initially subjected
to an atmospheric pressure and under an unsaturated condition with
water saturation equals to 0.5. For comparison, the fully reactive
transport model OpenGeoSys-GEM are also applied with similar set-
tings.

A sub-set of features was tested in the following benchmark which
was limited to consider three cases, where case 3 was further split
into of two sub-cases:

• Case 1: Only ASR process is taken into account, no transport
of CO

2
(or interaction of CO

2
with concrete) is considered. For
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Figure 20.: The geometry for the concrete degradation application

simplicity reasons the default mesh is used in OpenGeoSys-MP-
LT. In OpenGeoSys-GEM for minimization of calculation times
only a small mesh with 3 nodes and 2 elements is used.

• Case 2: CO
2

diffusive transport in the default geometry. Only
carbonation is taken into account.

• Case 3a: CO2 diffusion dominates, i.e. the progress of carbon-
ation is much faster than the typical time scales for ASR. A 1D
setup of a 1 m long concrete domain was applied here for the
simulation.

• Case 3b: CO2 diffusion and ASR compete, i.e. part of the do-
main is highly affected by ASR before the carbonation front ar-
rives. This case was implemented by enlarging the simulation
domain by a factor of 10. In this setup the carbonation front
needed 100 times longer time until it reaches the end of the
simulation domain.

8.3.3 Model dimensions and discretization

The default setup represents an 1D concrete structure (length = 1m)
discretized by a regular mesh of 100 elements with node distances of
1 cm.

Automatic time step sizing was used for all simulations. In addi-
tion, the time step size was limited as listed in Table.8

8.3.4 Results and discussion

Case 1

We select the first FE node at the left hand side boundary and plot the
temporal evolution of pH value and porosity with respect to the simu-
lation time in Figure.21. The blue lines represent results generated by
OpenGeoSys-MP-LT, while the red curves denote the OpenGeoSys-
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Table 8.: Maximum time step sizes for simulation cases in
OpenGeoSys-GEM and fixed time step sizes in OpenGeoSys-
MP-LT.

OpenGeoSys-GEM:
Maximum time step size [s]

OpenGeoSys-MP-LT: Time step
size [s]

Case 1 1e3 (∼3.169e-5 years)

0-2500 yrs: 157,784.63

(0.005 yrs) —
>2500 yrs: 15, 778, 463.0
(0.5 yrs)

Case 2 1e5 (∼3.169e-3 years) 31,556.926 (0.001 yrs)
Case 3a 1e3 (∼3.169e-5 years) 31,556.926 (0.001 yrs)
Case 3b 1e5 (∼3.169e-3 years) 157,784.63 (0.005 yrs)

(a) pH evolution

(b) porosity evolution

Figure 21.: The temporal evolution of pH value(a) and porosity(b)
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Figure 22.: Mineralogical evolution with time shown as volume frac-
tions. The porosity corresponds to 1 - (sum of solid vol-
ume fractions). Calcite, quartz, inert phases and some part
of C-S-H that make up 80 % of the volume are not shown.

GEM results. The results demonstrate a very good agreement be-
tween the two codes. The fully reactive transport model shows ad-
ditional variations in pH and porosity with time at around 800-1000

years. These variations are not covered by the look-up table, as they
are related to increments in SiO2 which are smaller than the resolu-
tion of the look-up table (SiO2 = 0.2 mol/l).

Figure 22 shows the evolution of the batch reaction system in terms
of time-dependent mineral volumes calculated by the OpenGeoSys-
GEM code. To highlight the minerals with active changes, calcite,
quartz, inert phases and some part of C-S-H that make up 80 % of
the volume are not shown in this figure. The use of the kinetic rates
for aggregate dissolution relates the SiO2 amounts with a time scale.
For this setup portlandite is dissolved after 85 years, hydrogarnet
after 380 years, ettringite after 855 years, hydrotalcite after 1075 years
and thermodynamic equilibrium is reached after about 1600 years.

Case 2

The case 2 is dedicated to investigate the appropriateness of the look-
up table approach for the case of carbonation only. Figure 23 shows
spatial profiles for CO2 concentrations in the gas phase at different
times. The pH and porosity profiles at the same times are shown in
Fig.24 .
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Figure 23.: Gaseous CO
2

concentration profiles at different times for
case 2.

Figure 24.: pH profiles at different times for case 2. (a): Precipitation
of quartz is allowed. (b) precipitation of quartz is sup-
pressed.
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Figure 25.: Mineralogical profile after 5 years of simulation time pro-
duced by OpenGeoSys-GEM.

Agreement between both approaches is relatively good, although
after 10 to 20 years the reactive transport approach predicts faster
progress of the carbonation front compared to the look-up table ap-
proach.

It should be noted that the progress of the carbonation front is de-
pendent on the square root of time which is typical for reactive fronts
driven by diffusive transport. The pH profiles show some overshoot-
ing by OpenGeoSys-GEM at the onset of the carbonation front which
coincides with a stronger interim reduction of the porosity. The poros-
ity reduction is caused by the interim formation of zeolite (chabazite),
which occurs when portlandite dissolution is completed and ettrin-
gite is dissolved (Fig. 25). Chabazite, which is a hydrated calcium
aluminum silicate, takes up considerable amounts of H2O from the
pore water. Removal of H2O from the pore water increases the alkali
concentrations and consequently pH. Due to the small stability field
of chabazite this effect is not covered by the look-up table and there-
fore not reproduced by OpenGeoSys-MP-LT. The mineralogical pro-
file in Fig. 25 shows that most mineral transformations follow a step
function, except for the dissolution of portlandite. Note that the di-
rection of transport is from left to right, i.e. the completely degraded
concrete is on the left and intact concrete is on the right side. The
smoothed dissolution profile indicates some effect of numerical diffu-
sion related to the steep concentration gradients for CO2 in the gas
phase and all solutes in liquid phase near the carbonation front. This
numerical diffusion might be also responsible for the faster progress
of the carbonation front as indicated by the OpenGeoSys-GEM re-
sults.
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Figure 26.: Gaseous CO
2

concentration profiles at different times for
benchmark case 3a.

Case 3a

Case 3a compares the combined effect of carbonation and ASR over a
relatively short distance, i.e. in this case concrete degradation due to
carbonation is dominant. The system evolution is therefore expected
to be very close to case 2. Comparison of the profiles for gaseous
CO2 (Fig. 26), pH (Fig. 27) and porosity (Fig. 28) resemble the cor-
responding profiles of case 2 (Fig. 23 and Fig. 24) very much. The
advancement of the carbonation front is a little bit faster than the
one predicted in case 2. Within 20 years, ASR consumes already a
portion of the portlandite which reduces slightly the amount of CO2

necessary to complete carbonation. For the fully reactive transport
model the carbonation front passed already the model boundary at
1 m distance and it is not visible anymore. Therefore, the front at
time t = 19.65 years is plotted for comparison with the look-up ta-
ble approach. As previously mentioned in connection with case 2,
the faster progress of the carbonation front can be explained by an
enhanced numerical diffusion in the OpenGeoSys-GEM code. In the
porosity profiles (Fig. 28) some oscillations are visible for the OGS-
GEM results on the left side, i.e. behind (left of) the carbonation front.
These oscillations are induced by numerical oscillations in the trans-
port solver caused by strong temporal variations in the concentrations
near the carbonation front. Concentration oscillations are smoothed
at the expense of small mineralogical changes as the chemical solver
enforces equilibrium between pore water composition and mineral-
ogy. In the specific setup for concrete carbonation it is believed that
the solid solution model for C-S-H phase reacts particularly sensitive
to changes in the pore water composition. The concentration oscil-
lations from the transport solver are not random. They occur at the
same position relative to the carbonation front. The carbonation front
moves slowly or even might stay at the same position over a long pe-
riod of time, which causes an accumulation of mineralogical changes
over many time steps.
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Figure 27.: pH profiles at different times for benchmark case 3a.

Figure 28.: Porosity profiles at different times for benchmark case 3a.

Case 3b

Case 3b extends case 3a to the full competition between carbonation
and ASR. On the left side of the domain, at early times, carbonation
dominates, whereas on the right side, ASR is the only process de-
grading the concrete. This case is a simple extension of case 3a in
terms of a 10 times longer simulation domain. This was achieved
by simply increasing the FE node distance by 10-fold. As for case
3a on the left side (x=0 m) the CO2 concentration in the gas phase
was fixed, whereas the right side of the domain was closed, i.e. a
no-flow boundary was applied on both the gas and liquid phase. As
the progress of the diffusion driven carbonation front follows a rela-
tionship which depends on the square root of time, it would take the
carbonation front in the absence of ASR about 2000 years to reach
the right boundary. This is 100 times longer than the time obtained
in case 3a ( 20 years). From the calculations performed in connection
with case 1 it is clear that the ASR is mostly completed within 2000

years. Results of the calculations are given in terms of CO2 concen-
tration in the gas phase (Fig. 29), pH profiles (Fig. 30) and porosity
profiles (Fig. 31). In general, the same effects for case 3a can be
observed in this case, while they are superimposed by the ASR. As
a consistency check, the carbonation front progress after 10 years in
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Figure 29.: Gaseous CO
2

concentration profiles at different times for
benchmark case 3b.

the cases 3a and 3b are the same, although discretization and time
step size were different. This shows that the difference between the
look-up table approach and full reactive transport is similar too. In
the cases 2 and 3a the carbonation front propagates slightly faster for
reactive transport calculations than with the look-up table approach.
In addition, variations of pH, mineral transformations and porosity
near the carbonation front become stronger with time. With time,
diffusive transport of solutes other than CO2 increasingly influences
concrete carbonation. The effect of chemical gradients across the car-
bonation front becomes more important with time. Over time, CO2

gradients and fluxes become smaller and the progress of the reac-
tion front decelerates correspondingly. This behavior is described by
the well-known square root relation (x

√
(tDa)) [68] where Da is an

apparent diffusion coefficient which includes the retardation due to
chemical reactions. The slow-down of the front allows geochemical
differences across the carbonation front to be equilibrated over longer
time steps. The influence of chemical gradients other than CO2 (in
gas and liquid phase) is not covered by the look-up table approach.
ASR does not depend on continuum scale spatial gradients in the
look-up table it is implemented as an internal source term for SiO2.
Interestingly, small differences in the progress of ASR are more ev-
ident from the porosity changes over time than pH evolution. The
pH changes with time in a more stepwise way, whereas porosity os-
cillates more strongly at intermediate pH values due to formation of
intermediate phases (compare Sect. 8.3.4-case 1, Fig. 21a and Fig.
21b).

8.3.5 Reference

H. Yonghui, S. Haibing,W. Erich, K. Olaf, and K. Georg. A new approach to
coupled two-phase reactive transport simulation for long-term degradation
of concrete. submitted.



8.3 benchmarking the look-up table approach 79

Figure 30.: pH profiles at different times for benchmark case 3b.

Figure 31.: Porosity profiles at different times for benchmark case 3b.
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1
D I S C U S S I O N A N D S U M M A RY

In the first part of the thesis, a numerical study of nonisothermal mul-
tiphase compositional compressible flow and transport is presented,
where an emphasis is placed on the accurate and robust handling of
phase change problem. Two different formulations: local NCP and
global NCP are addressed and compared. The phase change logic is
formulated as nonlinear complimentary problem (NCP) and restruc-
ture as algebraic equations using min function or mid function. Both
ideal and non-ideal thermodynamics are taken into account. In order
to suppress the numerical challenge where the cubic equation of state
is involved for the non-ideal properties, a nonsmooth inside-out algo-
rithm proposed by Watson et al.[3] is applied and extended. Different
numerical benchmarks related to desaturated process in deep geologi-
cal repositories of radioactive waste and to CO2 sequestration demon-
strate that both formulations, provide accurate numerical results, and
that it is capable of handling the strongly nonlinear coupling of mul-
tiphase flow and transport. While the phase change problem can be
handled in a efficient and robust way by using the nonlinear compli-
mentary problem.

Furthermore, this newly implemented compositional two-phase flow
model is extended into a coupled two-phase reactive transport model
framework based on a look-up table approach. For model validation,
a variety of applications are addressed for the concrete degradation
in the context of long-term safety assessment of the nuclear waste
repository.

Firstly(in Section 1.1), several well established cases have been em-
ployed to analyze the efficiency and robustness of local and global
NCP formulations. It is found that NCP formulations are numeri-
cally more robust and efficient in handling phase change compared to
conventional approaches. In both homogeneous and heterogeneous
media, the global-NCP formulation is around 20 % faster than the
local one. However, in heterogeneous media, the local NCP formu-
lation delivers a more accurate and stable result. The slightly longer
computation time is a good trade-off for suppressing numerical oscil-
lations at the interface of different media or at the location of phase
transition. In the near future, it is planned to apply the NCP formu-
lation in more complicated scenarios, such as in reservoir simulation
with three phases coexist.

2



1.1 remarks on the non-isothermal compositional two-phase flow model 3

While in Section 1.2, the degradation of concrete in the context of
nuclear waste disposal in Switzerland has been investigated based
on the validated compositional two-phase model. A special inter-
est has been focused on integrating the chemical reactive processes
into the two-phase model via a look-up table approach. It has been
demonstrated that the look-up table approach gives simulation re-
sults in great agreement with those from the fully coupled reactive
transport model. In terms of calculation time, the look-up table ap-
proach achieves up to 10 times faster compared to the reactive trans-
port model.

1.1 remarks on the non-isothermal compositional two-
phase flow model

[P2]: Huang et al.[69]

1.1.1 Background

Compositional two-phase flow is considered to be one of the funda-
mental physical processes in the field of geoscientific research. For ex-
ample, at sites where groundwater is contaminated by Non-Aqueous
Phase Liquids (NAPL), the dispersion of NAPL components occurs in
both the aqueous and gas phases [70, 71]. For CO2 sequestration, the
amount of CO2 dissolved in saline water determines the water-rock
interactions and also the long-term geochemical evolution(cf. Nord-
botten et al.[72]). For the assessment of nuclear waste repositories,
transport of radionuclides driven by the gas production is the focus
of a lot of recent research [73, 14].

Phase transition represents one of the most important processes
underlying compositional two-phase flow, and it consistently attracts
the interest of researchers and engineers. In the first part of the thesis,
two different formulations (namely local NCP and global NCP for-
mulations) which incorporate the phase change as nonlinear comple-
mentarity problem (NCP) are presented. Different numerical bench-
marks related to gas migration in deep geological repository of nu-
clear waste and to CO2 sequestration has successfully validated both
formulations can handle the phase change problem appropriately in
both idealize and non-ideal mixing system.

However, to the authors’ knowledge, there has been rarely a de-
tailed analysis of these two nonlinear formulations, with respect to
their numerical performance and computational efficiency in solving
the compositional two-phase flow problem. In this work, the inves-
tigation and comparison is conducted with the scientific simulator
OpenGeoSys [24, 25], which is based on the Galerkin Finite Element
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method. Both aforementioned NCP formulations have been imple-
mented in it.

1.1.2 Conclusion

Three well established benchmarks have been employed to analyze
the efficiency and robustness of these numerical models. It is found
that both local and global NCP formulation deliver results in good
agreement with those from conventional primary variable switching
(PVS) approaches. It is also found that NCP formulations are nu-
merically more robust and efficient for handling phase transition, as
shown by the fewer global Newton iterations and larger time step
sizes. In both homogeneous and heterogeneous media, the global
NCP formulation is around 20 % faster than the local one. However,
in heterogeneous media, the local NCP formulation is recommended,
as it delivers a more accurate and stable evaluation of capillary pres-
sure and relative permeability. The slightly longer computation time
is a good trade-off for suppressing numerical oscillations at the inter-
face of different media or at the location of phase transition.

1.1.3 Reference

Huang Y, Nagel T, Shao H. Comparing global and local implementations
of nonlinear complementary problems for the modeling of multi-component
two-phase flow with phase change phenomena[J]. Environmental Earth Sci-
ences, 2017, 76(18): 643. (cf. [69], Appendix A.2)

1.2 remarks on the two-phase reactive transport model

with look-up table

This part are mainly adopted from [47]

1.2.1 Discussion

From the benchmarking exercise, two main factors have been identi-
fied to cause differences between the look-up table approach and full
reactive transport.

1) The resolution of the look-up table used for the benchmarks does
not cover all variations in porosity, pH or quartz dissolution rates in
detail. This is obvious from the temporal evolution of pH and poros-
ity associated with ASR as shown in Fig. 4. The accuracy of the
look-up table approach can be improved by including interpolation
points for maxima/minima of porosity/pH/rates and/or by cover-
ing regions with strong changes with a finer mesh of interpolation
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points. As previously mentioned, the look-up table approach does
not cover the entire variability of the chemical system. Variability of
the parameters below the sampling scale is smoothed out. The ab-
solute minimum porosity for carbonation might not be included in
the look-up table as it is reached only for a very narrow intermedi-
ate stage of carbonation. The progress of the carbonation front is a
direct function of the diffusive CO2 flux. From Ficks law it is clear
that for a given CO2 concentration gradient the flux is controlled by
the effective CO2 (gas) diffusion coefficient. In our simplified setup
effective diffusion coefficient is calculated as the product of porosity
and pore diffusion coefficient. A mismatch in the porosity evolution
upon concrete degradation should influence the diffusion of CO2 and
might affect the progress of carbonation fronts. The interpretation of
the porosity profiles in Fig. 24 (b), Fig. 28 and Fig. 31 is not straight-
forward, as absolute porosity minima with time are not necessarily
present within the plotted time steps. It seems that OpenGeoSys-
GEM systematically calculates a slightly bigger intermediate porosity
reduction. These values might be even smaller than those calculated
with the look-up table as the diffusive transport of reactive species
other than CO2 in the aqueous phase influences transformation of
mineral phases. Nevertheless, lower porosity values should reduce
diffusive fluxes and slow down the progress of the carbonation front.
Note that the opposite was observed which shows that other pro-
cesses have a bigger influence on the observed diffusive fluxes.

2) Reactive transport calculations with OpenGeoSys-GEM are ex-
tremely sensitive to numerical oscillations in the solution of the trans-
port equations. With the standard Galerkin FE methods, as used in
OpenGeoSys, undershooting and overshooting of the solution are a
common problem at reaction fronts with steep concentration gradi-
ents. Often numerical oscillations are quite strong and spread out
into the whole calculations domain.

As the magnitude of these oscillations is different for each transport
equation the chemical system may become poorly defined and the
GEM algorithm fails to reach a solution. We observed this problem at
nearly all nodes in several benchmark runs. There are some methods
available in OpenGeoSys which enable to suppress the numerical os-
cillations. For example, for some systems a flux corrected transport
(FCT) method was successfully applied [67]. For the current bench-
mark calculations mass lumping was used. The drawback of this
method, like FCT, is that it causes an additional diffusive flux (nu-
merical diffusion) in the transport equations causing reaction fronts
to proceed faster.

It is shown from the above benchmark study that in both codes
the time step size has to be small in order to properly approximate
the progress of the carbonation front. Time step size t depends on
the Neumann stability condition [74], which in turn depends on the
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spatial discretization x (FE node distance). With a very refined dis-
cretization, the time step size may become a computationally limiting
factor.

One way to overcome limitations in time step size for OpenGeoSys-
MP-LT is to use source/sink terms derived from the look-up table
in a fully implicit way instead of an operator-splitting approach to
include the look-up table. The fully implicit method allows achiev-
ing improved numerical stability and enabling a larger time step size.
This further allows an automatic time stepping regime to be included
with time step size not limited by the Neumann stability condition,
but rather by changes in the reaction rates (e.g. completion of carbon-
ation at a node).

1.2.2 Conclusion

In this study, a new coupled two-phase reactive transport model de-
rived from the look-up table approach has been presented to simulate
the long-term degradation of concrete due to ASR and carbonation.
The proposed model is validated by the means of comparison with
a full reactive transport model . In general, the proposed approach
shows the same system evolution as the reactive transport models.
Differences in the propagation speed of carbonation fronts are not
necessarily related to the approach itself and can be attributed to nu-
merical diffusion.

In terms of calculation time, it was observed that the serial (not
parallelized) version of OpenGeoSys-MP-LT is up to 10 times faster
than OpenGeoSys-GEM which employs 32 threads for chemical cal-
culations. Although an exact speedup calculation is not possible due
to the use of different compilers, CPUs and operating systems, the
approach presented in this study leads to a significant reduction in
the computational efforts, while maintaining numerical stable and a
good accuracy.

The accuracy of the look-up table approach can be further im-
proved by including interpolation points for maxima/minima of poros-
ity/pH/rates and/or by covering regions with strong changes with a
finer mesh of interpolation points. Depending on the way the look-up
table is used in the multi-phase multi-component transport codes this
might cause problems. With OpenGeoSys-MP-LT the possibility was
tested to include the look-up table in terms of rates also for porosity
changes. These rates (time derivative of porosity) may strongly vary
between interpolation points which could cause convergence prob-
lems in case of the non-linear equation solver. In addition, the vari-
ability of e.g. porosity very much depends on the specific thermody-
namic setup (choice and quality of thermodynamic data for e.g. clay
and zeolite minerals).
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The look-up table approach can be applied to problems where the
transport of CO2 preferentially in the gas phase is much faster than
the transport of other reactive solutes in the liquid phase. There
are scenarios in the framework of radioactive waste disposal where
macroscopic transport of dissolved silica might influence the long-
term performance of the engineered system of a radioactive waste
repository. These scenarios are related to skin formation and poros-
ity clogging at clay/cement interfaces with a distinct dependency of
clogging time on numerical discretization and kinetic parametriza-
tion [75]. Given the very small extend of the influenced volume and
the complexity of porosity clogging [76], an approximation of the lo-
calized change of transport properties by time-dependent functions
seems more appropriate.

Furthermore, the formation and transformations of zeolite and clay
minerals at later stages of concrete degradation are kinetically con-
trolled. Here, an additional multiplicative function for accounting of
a kinetic slowdown of reactivity needs to be introduced, similar to
the function used by Bzant and Najjar [77] for cement hydration.

1.2.3 Reference

H. Yonghui, S. Haibing,W. Erich, K. Olaf, and K. Georg. A new approach to
coupled two-phase reactive transport simulation for long-term degradation
of concrete. submitted.

1.3 outlooks

The new functionalities proposed in this work, and implemented in
OpenGeoSys, opens a wide array of applications. Therefore, there
are plenty of topics of great interests which could developed in the
future.

1.3.1 Application

The numerical models presented in this work can be extended to de-
velop some more advanced models that are applicable, not only in
the field of nuclear waste storage and CO2 sequestration, but in some
more complex geologic systems and some other energy or environ-
mental problems.

• Deep geothermal system, such as the enhanced geothermal sys-
tem, has been receiving worldwide attention, and still under
intensive study over the last decades. Heat exploitation from
the deep geothermal system is subjected to complex physical
and chemical processes within the fluid and interaction with
high-temperature geological rock formation. It often involves



1.3 outlooks 8

heat transfer, multiphase flow, rock deformation and chemical
reactions. Among these, the non-isothermal compositional two-
phase reactive transport model can serve as the basis and will
play an important role for better understanding and efficient
utilization the deep geothermal energy.

1.3.2 Model extension

As one of the future topics of this work, the improved computational
efficiency of the chemical reaction part makes the proposed look-up
table based model particularly promising in further coupled with the
geomechanical model in OpenGeoSys for a multi-scale and multi-
chemo-physics analysis of the evolution of the concrete.
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Abstract

In high-enthalpy geothermal reservoirs and many other geo-technical applications,
coupled non-isothermal multiphase flow is considered to be the underlying governing
process that controls the system behavior. Under the high temperature and high
pressure environment, the phase change phenomena such as evaporation and
condensation have a great impact on the heat distribution, as well as the pattern of
fluid flow. In this work, we have extended the persistent primary variable algorithm
proposed by (Marchand et al. Comput Geosci 17(2):431–442) to the non-isothermal
conditions. The extended method has been implemented into the OpenGeoSys code,
which allows the numerical simulation of multiphase flow processes with phase
change phenomena. This new feature has been verified by two benchmark cases. The
first one simulates the isothermal migration of H2 through the bentonite formation in a
waste repository. The second one models the non-isothermal multiphase flow of
heat-pipe problem. The OpenGeoSys simulation results have been successfully verified
by closely fitting results from other codes and also against analytical solution.

Keywords: Non-isothermal multiphase flow; Geothermal reservoir modeling;
Phase change; OpenGeoSys

Background
In deep geothermal reservoirs, surface water seepages through fractures in the rock
and moves downwards. At a certain depth, under the high temperature and pressure
condition, water vaporizes from liquid to gas phase. Driven by the density difference, the
gas steam then migrates upwards. Along with its path, it will condensate back into the
liquid form and release its energy in the form of latent heat. Often, this multiphase flow
process with phase transition controls the heat convection in deep geothermal reservoirs.
Besides, suchmultiphase flow and heat transport are considered to be the underlying pro-
cesses in a wide variety of applications, such as in geological waste repositories, soil vapor
extraction of Non-Aqueous Phase Liquid (NAPL) contaminants (Forsyth and Shao 1991),
and CO2 capture and storage (Park et al. 2011; Singh et al. 2012). Throughout the process,
different phase zones may exist under different temperature and pressure conditions. At
lower temperatures, water flows in the form of liquid. With the rise of temperature, gas

© 2015 Huang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
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and liquid phases may co-exist. At higher temperature, water is then mainly transported
in the form of gas/vapor. Since the physical behaviors of these phase zones are different,
they are mathematically described by different governing equations. When simulating
the geothermal convection with phase change phenomena, this imposes challenges to the
numerical models. To numerically model the above phase change behavior, there exist
several different algorithms so far. The most popular one is the so-called primary vari-
able switching method proposed byWu and Forsyth (2001). InWu’s method, the primary
variables are switched according to different phase states. For instance, in the two phase
region, liquid phase pressure and saturation are commonly chosen as the primary vari-
ables; whereas in the single gas or liquid phase region, the saturation of the missing phase
will be substituted by the concentration or mass fraction of one light component. This
approach has already been adopted by the multiphase simulation code such as TOUGH
(Pruess 2008) and MUFTE (Class et al. 2002). Nevertheless, the governing equations
deduced from the varying primary variables are intrinsically non-differentiable and often
lead to numerical difficulties. To handle this, Abadpour and Panfilov (2009) proposed
the negative saturation method, in which saturation values less than zero and bigger than
one are used to store extra information of the phase transition. Salimi et al. (2012) later
extended this method to the non-isothermal condition, and also taking into account the
diffusion and capillary forces. By their efforts, the primary variable switching has been
successfully avoided. Recently, Panfilov and Panfilova (2014) has further extended the
negative saturation method to the three-component three-phase scenario. As the nega-
tive saturation value does not have a physical meaning, further extension of this approach
to general multi-phase multi-component system would be difficult. For deep geothermal
reservoirs, it requires the primary variables of the governing equation to be persistent
throughout the entire spatial and temporal domain of the model. Following this idea,
Neumann et al. (2013) chose the pressure of non-wetting phase and capillary pressure
as primary variables. The two variables are continuous over different material layers,
which make it possible to deal with heterogeneous material properties. The drawback
of Neumann’s approach is that it can only handle the disappearance of the non-wetting
phase, not its appearance. As a supplement, Marchand et al. (2013) suggested to use mean
pressure and molar fraction of the light component as primary variables. This allows both
of the primary variables to be constructed independently of the phase status and allows
the appearance and disappearance of any of the two phases. Furthermore, this algorithm
could be easy to be extended to multi-phases (≥ 3) multi-components (≥ 3) system.
In this work, as the first step of building a multi-component multi-phase reactive

transport model for geothermal reservoir simulation, we extend Marchand’s component-
basedmulti-phase flow approach (Marchand et al. 2013) to the non-isothermal condition.
The extended governing equations (‘Governing equations’ section), together with the
Equation of State (EOS) (‘Constitutive laws’ section), were solved by nested Newton iter-
ations (‘Numerical solution of the global equation system’ section). This extended model
has been implemented into the OpenGeoSys software. To verify the numerical code, two
benchmark cases were presented here. The first one simulates the migration of H2 gas
produced in a waste repository (‘Benchmark I: isothermal injection of H2 gas’ section).
The second benchmark simulates the classical heat-pipe problem, where a thermal con-
vection process gradually develops itself and eventually reaches equilibrium (‘Benchmark
II: heat pipe problem’ section). The numerical results produced by OpenGeoSys were
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verified against analytical solution and also against results from other numerical codes
(Marchand et al. 2012). Furthermore, details of numerical techniques regarding how to
solve the non-linear EOS system were discussed (‘Numerical solution of EOS’ section). In
the end, general ideas regarding how to include chemical reactions into the current form
of governing equations are introduced.

Method
Governing equations

Following Hassanizadeh and Gray (1980), we write instead the mass balance equations of
each chemical component by summing up their quantities over every phase. According
to Gibbs Phase Rule (Landau and Lifshitz 1980), a simplest multiphase system can be
established with two phases and two components. Considering a system with water and
hydrogen as constitutive components (with superscript h and w), they distribute in liquid
and gas phase, with the subscript α ∈ L,G. The component-basedmass balance equations
can be formulated as

�
∂(SLρw

L + SGρw
G )

∂t
+ ∇(ρw

L vL + ρw
GvG) + ∇(jwL + jwG) = Fw (1)

�
∂(SLρh

L + SGρh
G)

∂t
+ ∇(ρh

LvL + ρh
GvG) + ∇(jhL + jhG) = Fh, (2)

where SL and SG indicate the saturation in each phase. ρi
α (i ∈ {h,w},α ∈ {L,G}) repre-

sents the mass density of i-component in α phase. � refers to the porosity. Fh and Fw are
the source and sink terms. The Darcy velocity vL and vG for each fluid phase are regulated
by the general Darcy Law

vL = −KKrL
μL

(∇PL − ρLg) (3)

vG = −KKrG
μG

(∇PG − ρGg). (4)

Here, K is the intrinsic permeability, and g refers to the vector for gravitational force.
The terms jwL , jhL, jwG, and jhG represent the diffusive mass fluxes of each component in
different phases, which are given by Fick’s Law as

j(i)α = −�SαραD(i)
α ∇C(i)

α . (5)

Here D(i)
α is the diffusion coefficient, and C(i)

α the mass fraction. When the non-
isothermal condition is considered, a heat balance equation is added, with the assumption
that gas and liquid phases have reached local thermal equilibrium and share the same
temperature.

�∂[ (1 − SG)ρLuL + SGρGuG]
∂t

+ (1 − �)∂(ρScST)

∂t
(6)

+∇[ρGhGvG]+∇[ρLhLvL]−∇(λT∇T)

= QT + �hvap
(

�
∂(ρLSL)

∂t
− ∇(ρLvL)

)

In the above equation, the phase density ρG, ρL, the specific internal energy in different
phase uL, uG and specific enthalpy in different phase hL and hG are all temperature and
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pressure dependent. While ρS and cS are the density and specific heat capacity of the
soil grain, λT refers to the heat conductivity, and QT is source term, �hvap(�∂(ρLSL)

∂t −
∇(ρLvL)) represents the latent heat term according to (Gawin et al. 1995). Generally, the
specific enthalpy in Eq. 6 can be described as follows

hα = cpαT . (7)

Here cpα is the specific heat capacity of phase α at given pressure. At the same time,
relationship between internal energy and enthalpy can be described as

hα = uα + PαVα , (8)

where Pα and Vα are the pressures and volumes of phase α. Since we consider the liquid
phase is incompressible, its volume change can be ignored, i.e. h = u.

Non-isothermal persistent primary variable approach

Here in this work, we follow the idea of Marchand et al. (2013), where the ‘Persistent
Primary Variable’ concept were adopted. A new choice of primary variables consists of:

• P [Pa] is the weighted mean pressure of gas and liquid phase, with each phase volume
as the weighting factor. It depends mainly on the liquid saturation S.

P = γ (S)PG + (1 − γ (S))PL (9)

Here γ (S) stands for a monotonic function of saturation S, with
γ (S) ∈[ 0, 1] , γ (0) = 0, γ (1) = 1 . In Benchmark I (‘Benchmark I: isothermal
injection of H2 gas’ section), we choose

γ (S) = 0

In Benchmark II (‘Benchmark II: heat pipe problem’ section), we choose

γ (S) = S2

When one phase disappears, its volume converges to zero, making the P value equal
to the pressure of the remaining phase. If we assume the local capillary equilibrium,
the gas and liquid phase pressure can both be derived based on the capillary pressure
Pc, that is also a function of saturation S.

PL = P − γ (S)Pc(S) (10)

PG = P + (1 − γ (S))Pc(S) (11)

• X [-] refers to the total molar fraction of the light component in both fluid phases.
Similar to the mean pressure P, it is also a continuous function throughout the phase
transition zones. We formulate it as

X = SNGXh
G + (1 − S)NLXh

L
SNG + (1 − S)NL

(12)

In a hydrogen-water system, Xh
L and Xh

G refer to the molar fraction of the hydrogen in
the two phases, and NL and NG are the respective molar densities [mol m−3].
Based on the choice of new primary variables, the mass conservation Eqs. 1 and 2 can
be transformed to the molar mass conservation. The governing equations of the
two-phase two-component system are then written as
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�∂((SNG + (1 − S)NL)X (i))

∂t
(13)

+∇
(
NLX(i)

L vL + NGX(i)
G vG

)
+ ∇

(
NLSLW (i)

L + NGSGW (i)
G

)
= F(i)

with i ∈ (h,w) and the flow velocity v regulated by the generalized Darcy’s law,
referred to Eqs. 3 and 4.
The molar diffusive flux can be calculated following Fick’s law

Wi
α = −D(i)

α �∇X(i)
α . (14)

• T [ K] refers to the Temperature. If we consider the temperature T as the third
primary variable, the energy balance equation can then be included.

�∂
[
(1 − SG)NL

(∑
X(i)
L M(i)

)
uL + SGNG

(∑
X(i)
G M(i)

)
uG

]
∂t

(15)

+ (1 − �)∂(ρScST)

∂t
− ∇

[
NG

(∑
X(i)
G M(i)

)
hGvG

]

−∇
[
NL

(∑
X(i)
L M(i)

)
hLvL

]
− ∇ (λT∇T) = QT

The non-isothermal system can thus be simulated by the solution of combined Eqs. 13
and 15, with P, X, and T as primary variables. Once these three primary variables are
determined, the other physical quantities are then constrained by them and can be
obtained by the solution of EOS system. These secondary variables were listed in Table 1.
Compared to the primary variable switching (Wu and Forsyth 2001) and the negative
saturation (Abadpour and Panfilov 2009) approach, the choice of P and X as primary vari-
ables fully covers all three possible phase states, i.e., the single-phase gas, two-phase, and
single-phase liquid regions. It also allows the appearance or disappearance of any of the
two phases. Instead of switching the primary variable, the non-linearity of phase change
behavior was removed from the global partial differential equations and was embedded
into the solution of EOS.

Closure relationships

Mathematically, the solution for any linear system of equations is unique if and only if
the rank of the equation system equals the number of unknowns. In this work, the com-
bined mass conservation of Eqs. 1, 2, and the energy balance Eq. 6 must be determined
by three primary variables. Other variables are dependent on them and considered to be
secondary. Such nonlinear dependencies form the necessary closure relationships.

Table 1 List of secondary variables and their dependency on the primary variables

Parameters Symbol Unit

Gas phase saturation S(P, X) [-]

Molar density of phase α Nα(P, X , T) [ mol m−3]

Molar fraction of component i in phase α X(i)
α (P, X , T) [-]

Capillary pressure Pc(S) [Pa]

Relative permeability of phase α Krα(S) [-]

Specific internal energy of phase α uα(P, X , T) [ J mol−1]

Specific enthalpy of phase α Hα(P, X , T) [ J mol−1]

Heat conduction coefficient λpm(P, X , S, T) [ W m−1 K−1]



Huang et al. Geothermal Energy  (2015) 3:13 Page 6 of 23

Constitutive laws

Dalton’s Law regulates that the total pressure of a gas phase is equal to the sum of partial
pressures of its constitutive non-reacting chemical component. In our case, a gas phase
with two components, i.e., water and hydrogen is considered. Then the gas phase pressure
PG writes as

PG = PhG + PwG. (16)

Ideal Gas Law In our model, the ideal gas law is assumed, where the response of gas
phase pressure and volume to temperature is regulated as

PG = nRT
V

, (17)

where R is the Universal Gas Constant (8.314 J mol−1K−1), V is the volume of the gas
and n stands for the mole number gas. Reorganizing the above equation gives the molar
density of gas phase NG

NG = n
V

= PG
RT

. (18)

Combining Dalton’s Law of Eq. 16, we have

Nh
G = PhG

RT
,Nw

G = PwG
RT

. (19)

Furthermore, the molar fraction of component i can be obtained by normalizing its
partial pressure with the total gas phase pressure,

Xi
G = PiG

PG
. (20)

Incompressible Fluid Unlike the gas phase, the liquid phase in our model is consid-
ered to be incompressible, i.e., the density of the fluid is linearly dependent on the molar
amount of the constitutive chemical component. By assuming standard water molar den-
sity Nstd

L = ρstd
w
Mw , with ρstd

w refers to the standard water mass density (1000 kg m−3 in our
model), the in-compressibility of the liquid phase writes as

NL = Nstd
L

1 − Xh
L
. (21)

Henry’ LawWe assume that the distribution of light component (hydrogen in our case)
can be regulated by the Henry’s coefficient Hh

W (T), which is a temperature-dependent
parameter.

PhGH
h
W (T) = NLXh

L (22)

Raoult’s Law For the heavy component (water), we apply Raoult’s Law that the partial
pressure of the water component in the gas phase changes linearly with its molar fraction
in the liquid.

PwG = Xw
L P

w
Gvapor(T) (23)

Here Xw
L is the molar fraction of the water component in the liquid phase. PwGvapor(T)

is the vapor pressure of pure water, and it is a temperature-dependent function in non-
isothermal scenarios.
EOS for isothermal systems Based on the constitutive laws discussed in the ‘Constitutive

laws’ section, we have:
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X h
L N

std
L

Xw
L H

h
W (T)

+ Xw
L P

w
Gvapor(T) = PG (24)

PGXh
G = N std

L
Hh
W (T )

X h
L

Xw
L

(25)

According to Eqs. 24 and 25, Xh
L and Xh

G can be calculated explicitly, under the
condition:

G(T) = Hh
W (T )PwGvapor(T )

N std
L

<
1
4

(26)

which is obviously satisfied in water-air and water-hydrogen system, i.e., under the con-
dition that the temperature T is 25 ◦C, with H h

W (T) = 7.8 × 10−6[mol m−3 Pa−1],
PwGvapor(T) = 3173.07[ Pa], then we could have G(T) = 4.54 × 10−7 � 1

4 . Here, if we
only consider isothermal condition, the temperature is assumed to be fixed with T0. In
summary, Xh

L and Xh
G could be expressed as:

Xh
L = Xm(PL, S,T0) = Nstd

L + (PL + Pc)Hh
W (T0)

2Hh
W (T0)PwGvapor(T0)

(27)

+
(√

(Nstd
L + (PL + Pc)Hh

W (T0))2 − 4(PL + Pc)Hh
W (T0)Nstd

L PwGvapor(T0)
)

2Hh
W (T0)PwGvapor(T0)

Xh
G = XM(PG, S,T0) = Xh

LN
std
L

Hh
W (T0)PG(1 − Xh

L)
(28)

Where S is the saturation of light component, and Pc represents the capillary pressure.
The above equations are the most general way of calculating the distribution of molar
fraction. In Benchmark I (‘Benchmark I: isothermal injection of H2 gas’ section), we follow
Marchand’s idea (Marchand and Knabner 2014), by assuming there is no water vaporiza-
tion and the gas phase contains only hydrogen, which indicate PG ≡ PhG and Xh

G ≡ 1.
Therefore Eqs. 27 and 28 could be reformulated as:

Xh
L = Xm(PL, S,T0) = (PL + Pc)Hh

W (T0)

(PL + Pc)Hh
W (T0) + Nstd

L
(29)

Xh
G ≡ 1 (30)

Here, for simplification purpose, if we combined with Eqs. 10 and 11, Xh
L and Xh

G could
be expressed as functions of mean pressure P and gas phase saturation S, and the above
formulation can be transformed to

Xh
L = Xm(PL(P, S(P,X )), S(P,X),T0) = Xm(P, S,T0) (31)

Xh
G = XM(PG(P, S(P,X )), S(P,X ),T0) = XM(P, S,T0). (32)

Assuming the local thermal equilibrium of the multi-phase system is reached, then the
Equations of State (EOS) are formulated accordingly based on the three different phase
states.
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• In two phase region
Molar fraction of hydrogen (Xh

L and Xh
G) and molar density in each phase (NG and

NL) are all secondary variables that are dependent on the change of pressure and
saturation. They can be determined by solving the following non-linear system.

Xh
L = Xm(P, S,T0) (33)

Xh
G = XM(P, S,T0) (34)

NG = PG(P, S )

RT0
(35)

NL = Nstd
L

1 − Xh
L

(36)

SNG(X − Xh
G) + (1 − S )NL(X − Xh

L)

SNG + (1 − S )NL
= 0 (37)

• In the single liquid phase region
In a single liquid phase scenario, the gas phase does not exist, i.e., the gas phase
saturation S always equals to zero. Meanwhile, the molar fraction of light component
in the gas phase Xh

G can be any value, as it will be multiplied with the zero saturation
(see Eqs. 13 to 14) and vanish in the governing equation. This also applies to the gas
phase molar density NG, whereas the two parameters can be arbitrarily given, and
have no physical impact. So to determine the EOS, we only need to solve for the
liquid phase molar fraction and density.

Xh
L = X (38)

NL = Nstd
L

1 − X
(39)

• In the single gas phase region
Similarly, in a single gas phase scenario, the liquid phase does not exist, i.e., the gas
phase saturation S always equals to 1, whereas the liquid phase saturation remains
zero. Meanwhile, the molar fraction of light component in the liquid phase Xh

L can be
any value, as it will be multiplied with the zero liquid phase saturation (see Eqs. 13
to 14) and vanish in the governing equation. This also applies to the liquid phase
molar density NG, whereas the two parameters can be arbitrarily given, and have no
physical meaning. So to determine the EOS, we only need to solve for the gas phase
molar fraction and density.

Xh
G = X

NG = P
RT0

EOS for non-isothermal systems

As the energy balance of Eq. 6 has to be taken into account under the non-isothermal
condition, all the secondary variables not only are dependent on the pressure P but
also rely on the temperature T. Except for the parameters mentioned above, several
other physical properties are also regulated by the T/P dependency. Furthermore, in
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a non-isothermal transport, high non-linearity of the model exists in the complex varia-
tional relationships between secondary variables and primary variables. Therefore, how
to set up an EOS system for each fluid is a big challenge for the non-isothermal multi-
phase modeling. In the literature, (Class et al. 2002; Olivella and Gens 2000; Peng and
Robinson 1976; Singh et al. 2013a, and Singh et al. 2013b) have given detailed procedures
of solving EOS to predicting the gas and liquid thermodynamic and their transport prop-
erties. Here in our model, we follow the idea by Kolditz and De Jonge (2004). Detailed
procedure regarding how to calculate the EOS system is discussed in the following.
Vapor pressure As we discussed in the ‘Constitutive laws’ section, vapor pressure

is a key parameter for determining the molar fractions of different components in
each phase. The equilibrium restriction on vapor pressure of pure water is given by
Clausius-Clapeyron equation (Çengel and Boles 1994).

PwGvapor(T ) = P0 exp
[(

1
T0

− 1
T

) hwGM
w

R

]
(40)

where hwG is enthalpy of vaporization,Mw is molar mass of water. P0 represents the vapor
pressure of pure water at the specific Temperature T0. In our model, we choose T0 =
373K,P0 = 101, 325Pa. An alternative method is using the Antoine equation, written as

log10(PwGvapor(T )) = A − B
C + T

(41)

with A, B, and C as the empirical parameters. Details regarding this formulation can be
found in Class et al. (2002).
Specific enthalpy Specific enthalpy hα [J mol−1] is the enthalpy per unit mass. Accord-

ing to Eq. 6, we need to know the specific enthalpy of a certain phase. In particular, since
component-based mass balance is considered, we calculate the phase enthalpy as the sum
of mole (mass) specific enthalpy of each component in this phase. Here we assume that
the energy of mixing is ignored. For instance, the water-air system applied in the second
benchmark is formulated as

hG = hairG Xair
G + hwvap

G Xwvap
G (42)

hL = hairL Xair
L + hwliq

L Xwliq
L (43)

Here hairG is the specific enthalpy of air in gas phase, hwvap
G is specific enthalpy of vapor

water in gas phase, hairL represents the specific enthalpy of the air dissolved in the liquid
phase, while hwliq

L donates the specific enthalpy of the liquid water in liquid phase. While
Xair
G , Xwvap

G , Xair
L and Xwliq

L represent molar fraction [-] of each component (air and water)
in the corresponding phase (gas and liquid).
Henry coefficientWe assumeHenry’s Law is valid under the non-isothermal condition.

Therefore Henry coefficient is a secondary variable. In the water-air system, it can be
defined as (Kolditz and De Jonge 2004)

Hh
W (T) = (0.8942 + 1.47 exp(−0.04394T)) × 10−10 (44)

with T the temperature value in ◦C.
Heat conductivity Since the local thermal equilibrium is assumed, the heat conduc-

tivity λpm [W m−1 K−1] of the fluid-containing porous media is averaged from the heat
conductivities of the fluid phases and the solid matrix. Thus, it is a function of saturation
only.
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λpm = λSL=SG=0
pm + √

SL(λSL=1
pm − λSL=0

pm ) + √
SG(λSG=1

pm − λSG=0
pm ) (45)

Fugacity When the thermal equilibrium is reached, the chemical potentials of compo-
nent i in gas and liquid phase equal with each other. This equilibrium relationship can be
formulated as the equation of chemical potential ν

ν
(i)
G (PG,X(i)

L ,X(i)
G ,T) = ν

(i)
L

(
PL,X(i)

L ,X(i)
G ,T

)

In our model, the fugacity was applied instead of chemical potential. The above
relationship is then transformed to the equivalence of component fugacities, where

f (i)
G = f (i)

L

holds for each component i in each phase. In order to compute the fugacity of a
component in a particular phase, the following formulation is used

f (i)
α = PαX(i)

α φ(i)
α (46)

where φ
(i)
α is the respective fugacity coefficient of component.

Numerical scheme
Numerical solution of EOS

Physical constraints of EOS

Since the pore space should be fully occupied by either or both the gas and liquid phases,
the sum of phase saturation should equal to one. By definition, the saturation for each
phase should be no less than zero and no larger than one. This constraint is summarized
as ∑

α

Sα = 1 ∧ Sα > 0 (α ∈ G, L) (47)

Similarly, the sum of the molar fraction for all components in a single phase should also
be in unity, and this second constraint can be formulated as∑

i
X(i)
G = 1 ∧

∑
i
X(i)
L = 1 with X(i)

G > 0 ∧ X(i)
L > 0 (i ∈ h,w) (48)

Combining these constraints, we have

S = 0 ∧ Xh
L ≤ Xm(P, 0,T) (49)

0 ≤ S ≤ 1 ∧ Xm(P, S,T) − Xh
L = 0,Xh

G − XM(P, S,T) = 0 (50)

S = 1 ∧ Xh
G ≥ XM(P, 1,T) (51)

For the Eqs. 49 to 51, they contain both equality and inequality relationships, which
impose challenges for the numerical solution. In order to solve it numerically, we intro-
duce a minimum function (Kanzow 2004; Kräutle 2011), to transform the inequalities. It
is defined as

Ψ (a, b) := min{a, b} (52)

Combined with Eqs. 49 to 51, they can be transformed to

�(S,Xm(P, S,T) − Xh
L) = 0 (53)
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�(1 − S,Xh
G − XM(P, S,T)) = 0 (54)

SNG(X − Xh
G) + (1 − S)NL(X − Xh

L)

SNG + (1 − S)NL
= 0 (55)

Then Eqs. 53 to 55 formulates the EOS system, which needs to be solved on each mesh
node of the model domain.

Numerical scheme of solving EOS

For the EOS, the primary variables P and X are input parameters and act as the external
constraint. The saturation S, gas and liquid phase molar fraction of the light component
Xh
G and Xh

L are then the unknowns to be solved. Once they have been determined, other
secondary variables can be derived from them. When saturation is less than zero or big-
ger than one, the second argument of the minimization function in Eq. 53 will be chosen.
Then it effectively prevents the saturation value from moving into unphysical value. This
transformation will result in a local Jacobian matrix that might be singular. Therefore, a
pivoting action has to be performed before the Jacobian matrix is decomposed to cal-
culating the Newton step. An alternative approach to handle this singularity is to treat
the EOS system as a nonlinear optimization problem with the inequality constraints. Our
tests showed that the optimization algorithms such as Trust-Region method are very
robust in solving such a local problem, but the calculation timewill be considerably longer,
compared to the Newton-based iteration method.

Numerical solution of the global equation system
In this work, we solve the global governing equation Eqs. 13 to 15 with all the closure
relationships simultaneously satisfied. To handle the non-linearities, a nested Newton
scheme was implemented (see the flow chart in Fig. 1). All the derivatives in the EOS sys-
tem Eqs. 53 to 55 are computed exactly and the local Jacobian matrix is constructed in
an analytical way, while the global Jacobian matrix is numerically evaluated based on the
finite difference method. For the global equations, the time was discretized with the back-
ward Euler scheme, and the spatial discretization was performed with the Galerkin Finite
Element method. In each global Newton iteration, the updated global variables P, X, and
T from the previous iteration were passed to the EOS system, and acted as constraints to
solve for secondary variables. The solution of Eqs. 53 to 55 was performed one after the
other on each mesh node of the model domain.
For Newton iterations, the following convergence criteria was applied.

∥∥Residual(Step(k))∥∥2 ≤ ε (56)

where ‖‖2 denotes the Euclidean norm. A tolerance value ε = 1×10−14 were adopted for
the EOS and 1 × 10−9 for the global Newton iterations.

Handling unphysical values during the global iteration
In the ‘Numerical scheme of solving EOS’ section, we have discussed the procedure of
handling physical constraint of the EOS system. However, during the global iterations,
if the initial value of X is small enough, it may happen that X ≤ 0 can appear. Since
the negative value of X would cause failures of further iteration, it is necessary to force
the non-negativity constraint on X. To achieve this, a widely used method is extending the
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Fig. 1 Scheme of the algorithm for global equation system

definition of the physical variables such as NG, NL for X < 0, as was done in (Marchand
et al. 2013), (Marchand and Knabner (2014), and (Abadpour and Panfilov 2009). In our
implementation, we chose an alternative and more straightforward method, which is
adding a damping factor in each global Newton iteration when updating the unknown
vector. The damping factor δ are chosen as follows,

1
δ

= max{1, 2 ∗ �P(j)
P(j)

, 2 ∗ �X(j)
X(j)

, 2 ∗ �T(j)
T(j)

} (57)

where P(j), X(j) and T(j) denote pressure/molar fraction/temperature at node j.

Results and Discussions
In our work, the model verification was carried out in two separate cases, one under
isothermal and the other under non-isothermal conditions. In the first case, a simple
benchmark case was proposed by GNR MoMaS (Bourgeat et al. 2009). We simulated the
same H2 injection process with the extended OpenGeoSys code (Kolditz et al. 2012), and
compared our results against those from other code (Marchand and Knabner 2014). For
the non-isothermal case, there exists no analytical solution, which explicitly involves the
phase transition phenomenon. Therefore, we compared our simulation result of the clas-
sical heat pipe problem to the semi-analytical solution from Udell and Fitch (1985). This
semi-analytical solution was developed for the steady state condition without the consid-
eration of phase change phenomena. Despite of this discrepancy, the OpenGeoSys code
delivered very close profile as by the analytical approach.
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Benchmark I: isothermal injection of H2 gas

The background of this benchmark is the production of hydrogen gas due to the corro-
sion of the metallic container in the nuclear waste repository. Numerical model is built to
illustrate such gas appearance phenomenon. Themodel domain is a two-dimensional hor-
izontal column representing the bentonite backfill in the repository tunnel, with hydrogen
gas injected on the left boundary. This benchmark was proposed in the GNR MoMaS
project by French National Radioactive Waste Management Agency. Several research
groups has made contributions to test the benchmark and provided their reference solu-
tions (Ben Gharbia and Jaffré 2014; Bourgeat et al. 2009; Marchand and Knabner 2014;
Neumann et al. 2013). Here we adopted the results proposed in Marchand’s paper
Marchand and Knabner 2014 for comparison.

Physical scenario

Here a 2D rectangular domain � =[ 0, 200]×[−10, 10] m (see Fig. 2) was considered
with an impervious boundary at �imp =[ 0, 200]×[−10, 10] m, an inflow boundary at
�in = {0}×[−10, 10] m, and an outflow boundary at �out = {200}×[−10, 10] m. The
domain was initially saturated with water, hydrogen gas was injected on the left-hand-
side boundary within a certain time span ([ 0, 5 × 104century]). After that the hydrogen
injection stopped and no flux came into the system. The right-hand-side boundary is
kept open throughout the simulation. The initial condition and boundary conditions were
summarized as

• X(t = 0) = 10−5 and PL(t = 0) = PoutL = 106 [ Pa] on �.
• qw · ν = qh · ν = 0 on �imp.
• qw · ν = 0, qh · ν = Qh

d = 0.2785 [mol century−1m−2] on �in.
• X = 0 and Pl = PoutL = 106 [ Pa] on �out .

Model parameters and numerical settings

The capillary pressure Pc and relative permeability functions are given by the
van-Genuchten model (Van Genuchten 1980).

Pc = Pr
(
S− 1

m
le − 1

) 1
n

KrL = √
Sle

(
1 −

(
1 − S

1
m
le

)m)2

KrG = √
1 − Sle

(
1 − S

1
m
le

)2m

Fig. 2 Geometry and boundary condition for the H2 injection benchmark
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where m = 1 − 1
n , Pr and n are van-Genuchten model parameters and the effective

saturation Sle is given by

Sle = 1 − Sg − Slr
1 − Slr − Sgr

(58)

here Slr and Sgr indicate the residual saturation in liquid and gas phases, respectively.
Values of parameters applied in this model are summarized in Table 2.
We created a 2D triangular mesh here with 963 nodes and 1758 elements. The mesh

element size varies between 1m and 5m. A fixed time step size of 1 century is applied. The
entire simulated time from 0 to 104 centuries were simulated. The entire execution time
is around 3.241 × 104s.

Results and analysis

The results of this benchmark are depicted in Fig. 3. The evolution of gas phase satura-
tion and the gas/liquid phase pressure at the inflow boundary �in over the entire time
span are shown. In additional, we compare results from our model against those given
in Marchand’s paper (Marchand and Knabner 2014). In Fig. 3, solid lines are our simula-
tion results while the symbols are the results from Marchand et al. It can be seen that a
good agreement has been achieved. Furthermore, the evolution profile of the gas phase
saturation Sg , the liquid phase pressure PL, and the total molar fraction of hydrogen X
are plotted at different time (t = 150, 1 × 103, 5 × 103, 6 × 103 centuries) in Fig. 4a−c,
respectively.
By observing the simulated saturation and pressure profile, the complete physical

process of H2 injection can be categorized into five subsequent stages.
1) The dissolution stage: After the injection of hydrogen at the inflow boundary, the

gas first dissolved in the water. This was reflected by the increasing concentration of
hydrogen in Fig. 4c. Meanwhile, the phase pressure did not vary much and was kept
almost constant (see Fig. 4b).
2) Capillary stage: Given a constant temperature, the maximal soluble amount of H2

in the water liquid is a function of pressure. In this MoMaS benchmark case, our simula-
tion showed that this threshold value was about 1 × 10−3 mol H2 per mol of water at a
pressure of 1× 106 [Pa]. Once this pressure was reached, the gas will emerge and formed
a continuous phase. As shown in Fig. 4a, at approximately 150 centuries, the first phase
transition happens. Beyond this point, the gas and liquid phase pressure quickly increase,
while hydrogen gas is transported towards the right boundary driven by the pressure and
concentration gradient. In the meantime, the location of this phase transition point also
slowly shifted towards the middle of the domain.

Table 2 Fluid and porous medium properties applied in the H2 migration benchmark

Parameters Symbol Value Unit

Intrinsic permeability K 5 × 10−20 [m2]

Porosity � 0.15 [-]

Residual saturation of liquid phase Slr 0.4 [-]

Residual saturation of gas phase Sgr 0 [-]

Viscosity of liquid μl 10−3 [Pa · s]
Viscosity of gas μg 9 × 10−6 [Pa · s]
van Genuchten parameter Pr 2 × 106 [Pa]

van Genuchten parameter n 1.49 [-]
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Fig. 3 Evolution of pressure and saturation over time

3) Gas migration stage: The hydrogen injection process continued until the 5000th
century. Although the gas saturation continues to increase, pressures in both phases begin
to decline due to the existence of the liquid phase gradient. Eventually, the whole system
will reach steady state with no liquid phase gradient.
4) Recovery stage: After hydrogen injection was stopped at the 5000th century, the

water came back from the outflow boundary towards the left, which was driven by
the capillary effect to occupy the space left by the disappearing gas phase. During this
stage, the gas phase saturation begins to decline, and both phase pressures drop even
below the initial pressure. The whole process will not stop until the gas phase completely
disappeared.
5) Equilibrium stage: After the complete disappearance of the gas phase, the satura-

tion comes to zero again, and the whole system will reach steady state, with pressure and
saturation values same as the ones given in the initial condition.

Benchmark II: heat pipe problem

To verify our model under the non-isothermal condition, we adopted the heat pipe prob-
lem proposed by Udell and Fitch (1985). They have provided a semi-analytical solution for
a non-isothermal water-gas system in porous media, where heat convection, heat conduc-
tion as well as capillary forces were considered. A heater installed on the right-hand-side
of the domain generated constant flux of heat, and it was then transferred through the
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Fig. 4 Evolution of (a) gas phase saturation, (b) liquid phase pressure, and (c) total hydrogen molar fraction
over the whole domain at different time

porous media by conduction, as well as the enthalpy transport of the fluids. The semi-
analytical solution was developed for the steady state condition, and the liquid phase
flowed in the opposite direction to the gas phase. If gravity was neglected, the system
can be simplified to a system of six ordinary differential equations (ODE), the solution
of which was then be obtained in the form of semi-analytical solution. Detailed deriva-
tion procedure is available in (Helmig 1997), and the parameters used in our comparison
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are listed in Table 3. Interested readers may also refer to the supplementary material
regarding how this solution was deducted (see Additional file 1-6).

Physical scenario

As shown in Fig. 5, the heat pipe was represented by a 2D horizontal column (2.25 m in
length and 0.2 m in diameter) of porous media, which was partially saturated with a liquid
phase saturation value of 0.7 at the beginning. A constant heat flux (QT = 100 [W m−2])
was imposed on the right-hand-side boundary �in, representing the continuously operat-
ing heating element. At the left-hand-side boundary �out , Dirichlet boundary conditions
were imposed for Temperature T = 70 ◦C, liquid phase pressure PG = 1×105 [ Pa], effec-
tive liquid phase saturation Sle = 1, and air molar fraction in the gas phase Xa

G = 0.71.
Detailed initial and boundary condition are summarized as follows.

• P(t = 0) = 1 × 105 [ Pa], SL(t = 0) = 0.7, T(t = 0) = 70 [◦ C] on the entire
domain.

• qw · ν = qh · ν = 0 on �imp.
• qw · ν = qh · ν = 0, qT · ν = QT on �in.
• P = 1 × 105 [ Pa], SL = 0.7, T = 70 [◦ C] on �out .

Model parameters and numerical settings

For the capillary pressure−saturation relationship, van Genuchten model was applied.
The parameters used in the van Genuchten model are listed in Table 3. The water−air
relative permeability relationships were described by the Fatt and Klikoffv formulations
(Fatt and Klikoff Jr 1959).

KrG = (1 − Sle)3 (59)

KrL = S3le (60)

where Sle is the effective liquid phase saturation, referred to Eq. 58.

Table 3 Parameters applied in the heat pipe problem

Parameters name Symbol Value Unit

Permeability K 10−12 [m2]

Porosity � 0.4 [-]

Residual liquid phase saturation Slr 0.4 [-]

Heat conductivity of fully saturated
porous medium

λ
Sw=1
pm 1.13 [W m−1 K−1]

Heat conductivity of dry porous
medium

λ
Sw=0
pm 0.582 [W m−1 K−1]

Heat capacity of the soil grains cs 700 [J kg−1 K−1]

Density of the soil grain ρs 2600 [kg m−3]

Density of the water ρw 1000 [kg m−3]

Density of the air ρ 0.08 [kg m−3]

Dynamic viscosity of water μw 2.938 × 10−4 [Pa · s]
Dynamic viscosity of air μa

g 2.08 × 10−5 [Pa · s]
Dynamic viscosity of steam μw

g 1.20 × 10−5 [Pa · s]
Diffusion coefficient of air Da

g 2.6 × 10−5 [m2 s−1]

van Genuchten parameter Pr 1 × 104 [Pa]

van Genuchten parameter n 5 [-]
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Fig. 5 Geometry of the heat pipe problem

We created a 2D triangular mesh here with 206 nodes and 326 elements. The averaged
mesh element size is around 6m. A fixed size time stepping scheme has been adopted,
with a constant time step size of 0.01 day. The entire simulated time from 0 to 104 day
were simulated.

Results

The results of our simulation were plotted along the central horizontal profile over the
model domain at y = 0.1 m, and compared against semi-analytical solution. Tempera-
ture and saturation profiles at day 1, 10, 100, 1000 are depicted in Fig. 6a, b respectively.
As the heat flux was imposed on the right-hand-side boundary, the temperature kept
rising there. After 1 day, the boundary temperature already exceeded 100 ◦C, and the
water in the soil started to boil. Together with the appearance of steam, water saturation

Fig. 6 Evolution of (a) temperature and (b) liquid phase saturation over the whole domain at different time
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on the right-hand-side began to decrease. After 10 days, the boiling point has almost
moved to the middle of the column. Meanwhile, the steam front kept boiling and shifted
to the left-hand-side, whereas liquid water was drawn back to the right. After about
1000 days, the system reached a quasi-steady state, where the single phase gas, two
phase and single phase liquid regions co-exist and can be distinguished. A pure gas
phase region can be observed on the right and liquid phase region dominates the left
side.

Discussion

Analysis of the differences in benchmark II

From Fig. 6a, b, some differences can still be observed in comparison to the semi-
analytical solution. Our hypothesis is this difference originates from the capillary
pressure−saturation relationship adopted in our numerical implementation. In the orig-
inal formulation of Udell and Fitch (1985), the Leverett model was applied to produce
the semi-analytical solution. It is assumed that the liquid and gas are immiscible and
thus there is no gas component dissolved in the liquid phase, and vice versa. In our
work, we cannot precisely follow the same assumption, since the dissolution of chemi-
cal component in both phases is a requirement for the calculation of phase equilibrium.
When considering phase change, we need to allow the saturation S to drop below the
residual saturation, so that the evaporation as well as the condensation process can
occur. In the traditional van Genuchten model, infinite value of capillary pressure may
occur in the lower residual saturation region. Therefore we have made regularization
that allows water saturation to fall below the residual saturation, as demonstrated in
Fig. 7. Every time the capillary pressure needs to be evaluated, an if-else judgment is
performed.

if Slr < S < 1 then

P̄c(S) = Pc(S)
(61)

else
if 0 < S < Slr then

P̄c(S) = Pc(Slr) − P′
c(Slr)(S − Slr)

(62)

end
end

Here P̄c(S) indicates the modified van Genuchtem model, and P′
c(Slr) represents the

slope of Pc-S curve at the point of residual water phase saturation. The abovemodified van
Genuchten model approximates the same behavior as the original Leverett one in major-
ity part of the saturation region (see Fig. 7), yet still allowing the phase change behavior.
However, it is not exactly same as the one in the semi-analytical solution. This is consid-
ered to be the reason why the quasi steady-state profile by our numerical model (Fig. 6)
deviates from the analytical one.
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Fig. 7 The regularization of the van Genuchten model

Continuity of the global system and convergence of the iteration

In this work, we have only considered the homogeneous medium, where the primary
variables of P and X are always continuous over the entire domain. For some primary
variables, their derivatives in the governing Eqs. (13)−(15) are discontinuous at locations
where the phase transition happens, i.e., X = Xm(P, S = 0,T) and X = XM(P, S =
1,T). For instance, ∂S

∂X and ∂S
∂P might produce singularities at S = 0 and S = 1, and they

can cause trouble on the conditioning of the global Jacobian matrix. In our simulation, a
damped Newton iterations with line search has been adopted (see the ‘Handling unphys-
ical values during the global iteration’ section). We observed that such derivative terms
will result in an increased number of global Newton iterations, and the linear iteration
number to solve the Newton step as well. It does not alter the convergence of the Newton
scheme, as long as the function is Lipschitz continuous.
We are aware of the fact that this issue may be more difficult to handle for the het-

erogeneous media, where the primary variable P and X could not be directly applied any
more because of the non-continuity over the heterogeneous interface (Park et al. 2011).
In that case, choosing the primary variables which are continuous over any interface of
the medium is a better option. Based on the analysis by Ern and Mozolevski (2012), if we
assume Henry’s law is valid, concentration, or in another word, the molar or mass fraction
of the hydrogen in the liquid phase ρh

L (Xh
L), gas/liquid phase pressure PG/PL, as well as

the capillary pressure are all continuous over the interface. Therefore, they are the poten-
tial choices of primary variable which can be applied in the heterogeneous media (see
(Angelini et al. 2011); (Neumann et al. 2013), and (Bourgeat et al. 2013)). We are currently
investigating these options and will report on the results in subsequent work.

Conclusions
In this work, based on the persistent primary variable algorithm proposed by Marchand
et al. (2013), we extended the isothermal multi-phase flow formulation to the non-
isothermal condition. The extended governing equation is based on the mass balance of
each chemical component and is nonlinearly coupled with the non-isothermal EOS. The
numerical scheme has been implemented into the open source code OpenGeoSys. The
verification of our model were carried out in two benchmark cases.
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• For the GNR MoMaS (Bourgeat et al. 2009) benchmark (‘Benchmark I: isothermal
injection of H2 gas’ section), the extended model is capable of simulating the
migration of H2 gas including its dissolution in aqueous phase. The simulated results
fitted well with those from other codes (Marchand et al. 2013; Marchand and
Knabner 2014).

• For the non-isothermal benchmark, we simulated the heat pipe problem and verified
our result against the semi-analytical solution (‘Benchmark II: heat pipe problem’
section). Furthermore, our numerical model extended the original heat pipe problem
to include the phase change behavior.

Currently, we are working on the incorporation of equilibrium reactions, such as the
mineral dissolution and precipitation, into the EOS system. As our global mass-balance
equations are already component based, one governing equation can be written for each
basis component. Pressure, temperature, and molar fraction of the chemical components
can be chosen as primary variables. Inside the EOS problem, the amount of secondary
chemical components can be calculated based on the result of basis, which can further
lead to the phase properties as density and viscosity. The full extension of including
temperature-dependent reactive transport system will be the topic of a separate work in
the near future.

Nomenclature
Greek symbols
ε Tolerance value for Newton iteration. [-]
λT Heat Conductivity. [W m−1 K−1]
μα Viscosity in α phase. [Pa · s]
νiα Chemical potential of i-component in α phase. [Pa]
� Porosity. [-]
φi

α fugacity coefficient of i-component in α phase. [-]
ρi

α Mass density of i-component in α phase. [Kg m−3]

Operators

∧ Logical "and"
‖‖2 Euclidean norm
Ψ (a, b) Minimum function

Roman symbols

g Vector for gravitational force. [m s−2]
cpα Specific heat capacity in phase α at given pressure. [J Kg−1 K−1]
cS Specific heat capacity of soil grain. [J Kg−1 K−1]
Di

α Diffusion coefficient of i-component in phase α. [m2 s−1]
Fi Mass source/sink term for i-component. [Kg m−3 s−1]
f iα Fugacity of i-component in α phase. [Pa]
Hh
W Henry coefficient. [mol Pa−1 m−3]

hα Specific enthalpy. [J Kg−1]
jiα Diffusive mass flux of i-component in α phase. [mol m−2 s−1]
K Intrinsic Permeability. [m2]
Nα Molar density in α phase. [mol m−3]
Pα Pressure in α phase. [Pa]
PwGvapor Vapor pressure of pure water. [Pa]
Pc Capillary pressure. [Pa]
QT Heat source/sink term. [W s−2]
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R Universal Gas Constant. [J mol−1 K−1]
Sαr Residual saturation in α phase. [-]
Sα Saturation in α phase. [-]
Sle Effective saturation. [-]
T Temperature. [K]
uα Specific internal energy. [J Kg−1]
Vα Volume in α phase. [m3]
vα Darcy velocity in α phase. [m s−1]
X Total molar fraction of light component in two phases. [-]
Xi

α Molar Fraction of i-component in α phase. [-]

Additional files

Additional file 1: This document introduces how this analytical solution is deducted.

Additional file 2: This is the main matlab script file, which will be executed to produce the analytical solution.

Additional file 3: This file constructs the four coupled differential equations.

Additional file 4: This file calculates the relative permeability of gas phase.

Additional file 5: This file calculates the relative permeability of liquid phase.

Additional file 6: This file calculates the capillary pressure, with water saturation as the input parameter.
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Abstract Compositional multiphase flow is considered to be

one of the fundamental physical processes in the field ofwater

resources research. The strong nonlinearity and discontinuity

emerging from phase transition phenomena pose a serious

challenge for numerical modeling. Recently, Lauser et al.

(Adv Water Resour 34(8):957–966, 2011) have proposed a

numerical scheme, namely the nonlinear complementary

problem (NCP), to handle this strong nonlinearity. In this

work, the NCP is implemented at both local and global levels

of a finite element algorithm. In the former case, the NCP is

integrated into the local thermodynamic equilibrium calcu-

lation, while in the latter one, it is formulated as one of the

governing equations. The two different formulations have

been investigated through three well-established benchmarks

and analyzed for their efficiency and robustness. It is found

that both globally and locally implementedNCP formulations

are numerically more efficient and robust in comparison with

traditional primary variable switching approach. In homoge-

neous media, the globally implemented NCP formulation

leads to an approximately 20% faster simulation compared to

the local NCP. This is because a nested Newton iteration for

the local phase state identification can be avoided, and thus,

the overall computational resources are saved accordingly.

However, for problems involving strongly heterogeneous

media, the locally integrated NCP formulation suppresses

numerical oscillations and delivers more accurate and robust

results, especially at the phase boundary.

Keywords Phase transition � Multiphase flow � Nonlinear
complementary problem � Numerical efficiency and

accuracy � OpenGeoSys

Greek symbols

la Dynamic viscosity of phase a (Pa s)

kT Effective heat conductivity tensor [W ðm KÞ�1
]

X (sub)domains

x Test function

/ Porosity (-)

Ui Fugacity coefficient (-)

q Mass density (kg m�3Þ
s Overall computational time (s)

Operators

^ Logical and

div Divergence operator

r Gradient operator

? Complement operator

Roman symbols

cpa Specific heat capacity of fluid phase a (J ðkg KÞ�1Þ
cpS Specific heat capacity of soil grain (J ðkg KÞ�1Þ
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Di
a Diffusivity tensor (m2 s�1)

Fi
Source or sink term of component i ðkg ðm3 sÞ�1

)

f ia Fugacity of component i in a phase (Pa)

g Gravitational acceleration (m s�2)

H Henry constant (mol ðPa m3Þ�1
)

ha Specific enthalpy of phase a (J kg�1)

Jia Diffusive flux of component i in phase a (m s�1)

K Intrinsic permeability tensor (m2)

kra Relative permeability of phase a (-)

Mi Molar mass of ith component (kg mol�1)

Na Molar density of phase a (mol m�3Þ
Nc Total number of components existing in the system

Pa Pressure in phase a (Pa)

PC Capillary pressure (Pa)

Psat Vapor saturation pressure (Pa)

Pvap Vapor pressure (Pa)

q Darcy velocity ðm s�1)

QT Heat source or sink (W m�3)

S Saturation (-)

T Temperature (K)

ua Specific internal energy (J kg�1)

UP Primary variable set

US Secondary variable set

xia Molar fraction of ith component in phase a (-)

Introduction

Compositional two-phase flow is considered to be one of

the fundamental physical processes in the field of geosci-

entific research. For example, at sites where groundwater is

contaminated by Non-Aqueous Phase Liquids (NAPL), the

dispersion of NAPL components occurs in both the aque-

ous and gas phases (Sleep and Sykes 1989; Forsyth 1994).

For CO2 sequestration, the amount of CO2 dissolved in

saline water determines the water–rock interactions and

also the long-term geochemical evolution (Nordbotten and

Celia 2011; Zhang and Agarwal 2013). For the assessment

of nuclear waste repositories, transport of radionuclides

driven by the gas production is the focus of a lot of recent

research (Xu et al. 2008; Bourgeat et al. 2009b).

Phase transition represents one of the most important

processes underlying compositional two-phase flow, and it

consistently attracts the interest of researchers and engi-

neers. Compositional two-phase flow incorporating the

phase transition is difficult to simulate due to several rea-

sons. Firstly, the equations that describe two-phase zones

and single-phase zones are qualitatively different, since the

composition in two-phase zones is controlled by thermo-

dynamic equilibrium, while it is not the case in single-

phase zones (Panfilov and Panfilova 2014). Moreover, the

pore fluid mixture can be in either a single-phase or two-

phase state, depending on the local pressure, temperature,

and phase composition conditions. Such phase transition

creates discontinuities in the primary or secondary vari-

ables such as the phase saturation. Additionally, phase

change-induced latent heat effects introduce nonlinearities

in the energy balance equation, which tends to cause

numerical difficulties (Siavashi et al. 2014).

In order to overcome these challenges, several numerical

approaches have been proposed. The conventional approach

is to alter the combination of primary variables based on the

present phase state, which is also known as the primary

variable switching (PVS) scheme (Coats et al. 1980;Wu and

Forsyth 2001; Class et al. 2002). Another widely known

alternative is performing two-stage flash calculations, ter-

med phase stability analysis and phase splitting (Firoozabadi

1999;Moortgat et al. 2012). Recently, the persistent primary

variable (PPV) approach was proposed to detect the gas

phase appearance and disappearance in the context of

nuclear waste repositories (Bourgeat et al. 2009b). In this

approach, either nonstandard primary variables such as

generalizedmass density are applied (Bourgeat et al. 2009a),

or the definition of variables such as saturation or capillary

pressure is extended to incorporate information on phase

transitions (Abadpour and Panfilov 2009; Neumann et al.

2013).

The aforementioned approaches have demonstrated the

capability of modeling phase transition, yet some specific

restrictions remain. For example, in the PVS scheme,

numerical oscillation might be introduced within Newton

iterations due to frequent switching of primary variables,

which often leads to irregular convergence behavior,

whereas for the flash calculation approach, although it

delivers stable results in terms of phase transition (Hoteit

and Firoozabadi 2008; Zidane and Firoozabadi 2015), the

minimization of Gibbs free energy required by phase sta-

bility analysis usually leads to an expensive computation.

With regard to the PPV scheme, Neumann et al. (2013)

pointed out that it suffers from numerical difficulties when

liquid phase is allowed to vanish. To alleviate these issues,

Lauser et al. (2011) introduced a new approach which

formulates the process of phase disappearance or emer-

gence as so-called nonlinear complementary problems

(NCPs). This numerical scheme results in intrinsically non-

differentiable but semi-smooth equation systems, which

can be solved by semi-smooth Newton scheme (Hager and

Wohlmuth 2010). The main advantage of NCP approach is

avoiding the variable switching by using a fixed set of

primary unknowns and nonlinear equations. Another

advantage is no phase stability analysis is necessary due to

the presence of complementarity conditions. To the
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authors’ understanding, the NCP can be implemented in

two different ways.

Local NCP formulation

In this formulation, the NCP is combined with thermody-

namic model to construct the local problems (Marchand

et al. 2013). A local nonlinear solver of the semi-smooth

Newton type is applied to determine the phase status and

phase compositions, while standard Newton algorithm is

employed to solve the global mass and energy conserva-

tions for all primary unknowns.

Global NCP formulation

As proposed by Lauser et al. (2011), when combined NCP

with mass and energy balance equations, the extended

global system can be solved by an iterative semi-smooth

Newton algorithm without requiring nested Newton itera-

tions to identify the local phase state.

To our knowledge, there has been rarely a detailed

analysis of these two nonlinear formulations, with respect

to their numerical performance and computational effi-

ciency in solving the compositional two-phase flow prob-

lem. In this work, the investigation is conducted with the

scientific simulator OpenGeoSys (Kolditz et al. 2012;

Huang et al. 2015), which is based on the Galerkin finite

element method. Both aforementioned NCP formulations

have been implemented in it. The paper is structured as

follows. In ‘‘The mathematical framework’’ section, the

mathematical formulation of non-isothermal multi-com-

ponent two-phase flow is presented, together with the

thermodynamic equilibrium model. The details of local and

global NCP formulations are introduced in ‘‘Nonlinear

formulations’’ section. Following that, ‘‘Numerical solution

strategy’’ section focuses on the technical issues regarding

the discretization, linearization, and numerical solution

strategies. In ‘‘Numerical experiments’’ section, three

benchmarks are defined for the performance analysis of

different numerical implementations. The results are

compared and discussed in ‘‘Results’’ section. Finally, the

advantages and drawbacks of the two NCP formulations

are summarized.

The mathematical framework

Throughout this work, the following assumptions have

been made for the compositional two-phase flow model.

• Pressure remains at the order of magnitude of atmo-

spheric pressure.

• Temperature ranges from 10 to 300 �C.
• Low mutual miscibility.

• Local thermal and chemical equilibrium are assumed to

hold at all times.

• Gas phase is assumed to behave as an ideal gas. Liquid

phase is an incompressible fluid.

Governing equation

Let a 2 fG; Lg denote the set of gas and liquid phases. Nc

indicates the total number of components present in the

system. The mass conservation for each component can be

written as

/
o

ot

X

a2fG;Lg
NaSax

i
a

0
@

1
Aþ div

X

a2fG;Lg
Na xiaqaþ Jia
� �

2
4

3
5¼ Fi;

ð1Þ

where xia is the molar fraction of component i in phase a, Sa
is the saturation of phase a, and Na represents the phase

molar density. For a particular phase a, its velocity qa is

given by the generalized Darcy’s law

qa ¼ �KkraðSÞ
la

ðrPa � qagÞ; ð2Þ

with qa indicating the mass density, and the diffusive flux

Jia is governed by Fick’s law

Jia ¼ �/SaD
i
arxia i 2 ½1; . . .;Nc�: ð3Þ

Note that in a compositional system, the diffusive fluxes for

all components should sum to zero. When thermal effects

need to be considered, the energy balance equation is then

augmented along with the above mass balance

formulations

/
o

ot
1� SGð ÞqLuL þ SGqGuG½ �

þ ð1� /Þ o
ot
ðqScpSTÞ þ div qGhGqG½ � þ div qLhLqL½ �

� div kTrTð Þ ¼ QT;

ð4Þ

where cpS denotes the specific heat capacity of solids. uL
and uG stand for the specific internal energy. The specific

enthalpy ha in phase a can be computed as

ha ¼
Z T

T0

cpadT : ð5Þ

Note that the enthalpy of gas phase is higher than that of

the liquid, and the difference between them equals to the
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latent heat of vaporization at given pressure and tempera-

ture, which guarantees the phase changes from liquid to gas

or vice versa.

The relationship between specific internal energy ua and

specific enthalpy ha is related to the pressure volume work.

Since the liquid phase is assumed to be incompressible, i.e.,

the volume change in the liquid phase is neglected

(uL ¼ hL). For the compressible gas phase, however, the

specific enthalpy is given by

hG ¼ uG þ PG

qG
: ð6Þ

Equations (1)–(4) provide a general mathematical

framework for compositional two-phase flow. Yet, their

solution has to be complemented by the requirement of

local thermodynamic equilibrium.

Phase behavior

In a compositional two-phase flow model, phase equilib-

rium calculation claims a most critical part. The calculation

is required to detect the phase transition and obtain the

correct phase composition. Here, the thermodynamic

equilibrium is represented as the equality of fugacities in

the gas and liquid phases

f iGðPG; T; x
i
GÞ ¼ f iLðPL; T; x

i
LÞ; ð7Þ

with f iG and f iL indicating the fugacity of component i in gas

and liquid phase, respectively. Following the definition of

fugacity, the above equation can be extended

f ia ¼ UixiaPa; a 2 fG; Lg; and i 2 ½1; . . .;Nc�; ð8Þ

with Ui denoting the fugacity coefficient. Meanwhile, the

mass balance for a particular component within any ele-

ments is represented by a set of material balance equations

(Whitson and Michelsen 1989)

Xi
X

a2fG;Lg
NaSa ¼

X

a2fG;Lg
xiaNaSa: ð9Þ

Here, Xi represents the overall molar fraction of component

i. In order to close the system, phase constraints and sat-

uration constraints must be applied
X

a

Sa ¼ 1; ð10Þ

XNc

i¼1

xiG � xiL
� �

¼ 0: ð11Þ

The conventional approach to handling the phase transition

can be achieved in several different ways. One commonly

applied strategy is the primary variable switching (PVS)

approach (Coats et al. 1980). Within each Newton iteration

per time step, the phase appearance and disappearance are

determined by solving equation system (1)–(4) and (7). In

case the solution yields saturation value Sa\0, it indicates

the phase a vanishes, and the saturation has to be set to

zero. Since Sa is no longer free, the component molar

fraction for the present phase xic ðc 2 fG; Lg; c 6¼ aÞ
becomes the primary variable and replace the saturation Sa.

The same principle applies when Sa [ 1, which suggests

phase a is over-saturated and the other phase disappears.

With regard to the phase appearance, a saturation pressure

is calculated and compared with the pressure of the present

phase. If the calculated saturation pressure is larger, it

suggests the two-phase will coexist, and saturation Sa will

be the primary variable again.

Nonlinear complementarity problem (NCP)

Different from the conventional approaches, a new

approach has recently been introduced by utilizing the so-

called nonlinear complimentary problem (NCP) (Facchinei

and Pang 2007). In optimization theory, complementarity

conditions usually arise as the Karush–Kuhn–Tucker

(KKT) condition of a constrained nonlinear optimization

problem (Gopal and Biegler 1999), and they can be used to

represent the switches between mathematical models. Its

general form can be written as

0�w1ðxÞ ? w2ðxÞ� 0: ð12Þ

This indicates w1ðxÞ � w2ðxÞ ¼ 0, and both w1ðxÞ and

w2ðxÞ are nonnegative. Operator ? denotes w1ðxÞ com-

plements with w2ðxÞ. Such nonlinear complementarity

constrains can also be applied to the phase transition

problem, in which they serve as the KKT conditions for the

phase equilibrium model. For a two-phase system that

involves gas and liquid phases, there are three possible

combinations of phase status.

(1) When only the liquid phase is present, the gas phase

saturation SG is 0. The composition distribution in the

single liquid phase is no longer controlled by thermody-

namic equilibrium. According to Michelsen (1982), the

liquid phase is stable at the given pressure and temperature,

if the following stationarity criterion is satisfied:

1þ
XNc

i¼1

xiG lnxiG þ lnUi
G � lnxiL � lnUi

L � 1
� �

� 0: ð13Þ

Based on thermodynamic equilibrium Eq. (7), the follow-

ing relationships can be formulated:

xiG ¼ KixiL; i 2 ½1; . . .;Nc�

Ui
G ¼ Ui

L

Ki

PL

PG

:

8
><

>:
ð14Þ

where Ki is known as the equilibrium ratio. Substituting
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Eq. (14) into criterion (13), we obtain that the liquid phase

is stable if and only if the sum of gas phase composition

should not exceed 1, i.e.,
PNc

i¼1 x
i
G � 1. Therefore, the sta-

bility condition for single liquid phase can be written as:

SG ¼ 0 ^
XNc

i¼1

xiG � 1: ð15Þ

(2) A similar relationship holds when a single gas phase

is present in the system.

SL ¼ 0 ^
XNc

i¼1

xiL � 1: ð16Þ

(3) When both phases are present, the constituent phase

composition has to satisfy the thermodynamic equilibrium

(Eq. 7), and their molar fractions should sum up to one:

Sa [ 0 ^
XNc

i¼1

xia ¼ 1; a 2 fG; Lg: ð17Þ

Equations (15)–(17) can be summarized into the com-

plementarity constraints:

0� Sa ? 1�
XNc

i¼1

xia

 !
� 0; a 2 fG; Lg: ð18Þ

The complementarity constraints (18), consisting of equa-

tions and inequalities, can be further expressed equiva-

lently by a nonlinear complementarity function, such that

the inequalities can be avoided. In this work, a minimum

function is adopted:

min Sa; 1�
XNc

i¼1

xia

 ! !
¼ 0; a 2 fG; Lg: ð19Þ

At locations where the first argument Sa and the second

argument ð1�
PNc

i¼1 x
i
aÞ are equal, the min-function is

known to be discontinuous. Yet at all other places, the min-

function has the attractive property that it is both smooth

and differentiable. The piecewise differentiable and semi-

smooth features are perfectly suited for the semi-smooth

Newton algorithm (Masson et al. 2014). In Sect. 6.1, it will

be further discussed why in certain cases the NCP approach

is advantageous over the conventional approaches.

Nonlinear formulations

In a finite element implementation, the thermodynamic

equilibrium model can either be solved as a constraint

equation coupled with the governing Eqs. (1)–(4), or being

handled as a separate flash calculation routine (Cao 2002).

Based on these two strategies, two different nonlinear for-

mulations will be presented in terms of incorporating the

thermodynamic equilibrium model along with the comple-

mentarity constraints.

Local NCP formulation

This formulation was first proposed by Marchand et al.

(2012), in which the primary variables are chosen to be a

‘‘molar variable’’ set (Voskov and Tchelepi 2012). It

includes:

• the reference phase pressure P,

• overall molar fraction Xi; i 2 ½1; . . .;Nc � 1�, with

(Nc � 1) degrees of freedom,

• the temperature T.

The local NCP is embedded within the solution procedure

of the local thermodynamic equilibrium, and it is con-

structed as part of the local problems for solving all sec-

ondary variables on each integration points. For a given set

of primary variables P, Xi ði 2 ½1; . . .;Nc � 1�Þ and T, the

local problem reads,

f iG PG; T; x
i
G

� �
� f iL PL; T; x

i
L

� �
¼ 0

Xi � ð1� SGÞNLx
i
L þ SGNGx

i
G

ð1� SGÞNL þ SGNG

� �
¼ 0

min Sa; ð1�
XNc

i¼1

xiaÞ
 !

¼ 0: a 2 fG; Lg

:

8
>>>>>>><

>>>>>>>:

ð20Þ

In total, there are 2Nc þ 2 equations, along with 2Nc þ 2

secondary variables, including Sa; x
i
a, a 2 fG; Lg,

i 2 ½1; . . .;Nc�. Within each global Newton iteration,

Eq. (20) is solved with the updated primary variable. In

return, the updated Sa and xia will be cast in the next round

of global Newton iteration to solve Eqs. (1)–(4). The

details of the so-called nested Newton procedure can also

be found in Marchand et al. (2013).

Global NCP formulation

An alternative to the local NCP formulation was proposed

by Lauser et al. (2011), who directly combined the com-

plementary constraints with the global governing equa-

tions. In this work, the ‘‘natural variable’’ set (Coats et al.

1980) is chosen as primary variables. They are

• the reference phase pressure P,

• the gas phase saturation SG,

• the gas phase composition xiG, i 2 ½1; . . .;Nc�, with (Nc)

degrees of freedom,

• the temperature T.

The liquid phase compositions xiL, which are selected as

secondary variables, can be uniquely described in terms of

primary variables by reformulating Eqs. (7) and (8)
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xiL ¼ KiðP; T ; xiGÞxiG; i 2 ½1; . . .;Nc�: ð21Þ

To summarize, let H : RðNcþ3Þ ! RðNcþ1Þ represent the
mass and energy balance Eqs. (1)–(4), the global governing

equation system reads

HðUÞ ¼ 0

min Sa; 1�
XNc

i¼1

xia

 ! !
¼ 0: a 2 fG; Lg;

8
>><

>>:
ð22Þ

where U represents the primary variable set:

U ¼ ½P; SG; xiG; T �
T 2 RðNcþ3Þ.

Within the global NCP formulation, the phase state

identification no longer requires additional local Newton

iterations on each element or integration point. This means

less computational resources are required on the local

level, at the price that the global linear equation system is

larger. Nevertheless, due to the piecewise linearity of the

min-function, a Schur complement strategy (Ouellette

1981) can be further applied on the Jacobian matrix to

minimize the size of global system. More details regarding

this procedure will be discussed in Sect. 3.2.

Numerical solution strategy

Discretization

In this work, the Galerkin finite element method is employed

for spacial discretization, with a backward Euler fully

implicit scheme for the time integration. On each (sub)do-

main X, the weighted residual method is used to derive the

weak form of mass and energy balance Eqs. (1)–(4). It reads

/
Dt

X

a2fG;Lg

Z

X
NaSax

i
a

� �kþ1� NaSax
i
a

� �kh i
xdX

þ
X

a2fG;Lg

Z

X
div Nax

i
a qa þ Jia
� �� �kþ1

xdX

¼
Z

X
ðFiÞkþ1xdX

ð23Þ

for component-based mass balance and

/
Dt

X

a2fG;Lg

Z

X
qaSauað Þkþ1� qaSauað Þk

h i
xdX

þ ð1� /ÞqScpS
Dt

X

a2fG;Lg

Z

X
Tkþ1 � Tk
� �

xdX

�
Z

X
divðkrTkþ1ÞxdX

þ
X

a2fG;Lg

Z

X
div qahaqað Þkþ1xdX ¼

Z

X
ðQTÞkþ1xdX

ð24Þ

for energy balance of the fluid mixtures. Here, x 2 H1
0

represents the test function. The superscripts �k and �kþ1 are

employed here to represent the previous (tk) and current

(tkþ1) time step, and Dt denotes the actual time-step size

(Dt ¼ tkþ1 � tk).

The Laplacian-related terms in the above formulations

have the general form of
R
a divVxdX, and they yield

second-order differentials in Euclidean space of the

respective primary variables. The reduction in the differ-

entiation order of the Laplacian-related terms can be real-

ized via integration by parts and Green–Gauss theorem as

follows:
Z

X
divVxdX ¼

Z

C
V � nCxdC�

Z

X
V � rxdX; ð25Þ

where C represents the domain boundary oXand nC is the

unit outward normal at the boundary surface.

In this work, a special attention is paid to the dis-

cretization of complementary problem (Eq. 19). In global

NCP formulation, the NCP is cast as governing equations

coupled with mass and energy balance equations. Here, the

nodal discretized version for NCP is given as follows:

C ðUPÞkþ1
� 	

:¼ CGððUPÞkþ1Þ
CLððUPÞkþ1Þ

" #
¼ 0 ð26Þ

with

Ca ¼ min ðSaÞkþ1; 1�
XNc

i¼1

xia
� �kþ1

( )
; a 2 fG; Lg:

ð27Þ

Linearization strategy

Semi-smooth Newton scheme

In non-isothermal two-phase flow problems, nonlinearities

can emerge from the conservation Eqs. (1)–(4), from the

thermodynamic equilibrium Eqs. (7)–(11), as well as from

the NCP Eq. (19). Mathematically, these nonlinearities can

be categorized into smooth or non-smooth types. In the

conservation equations and thermodynamic equilibrium

formulations, the function itself, as well its first-order

derivatives, is continuous with respect to the primary

unknowns. Therefore, the nonlinearities originated from

them are considered to be smooth. On the contrary, the

minimum functions of Eq. (19) are considered to be semi-

smooth, as discussed in Sect. 2.3. For the two types of

nonlinearities, the corresponding linearization strategies

are also different. Smooth nonlinearities can be directly

handled by standard Newton scheme, while a semi-smooth

Newton scheme (Kräutle 2011) must be employed to
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handle the complementary constraints. This algorithm is

proven to achieve local convergence while keeping the

quadratic convergence rate.

In the local NCP formulation, the local problem (20) is

of semi-smooth type. Therefore, in each time step, semi-

smooth Newton scheme is performed on each integration

point, while the standard Newton method is used to solve

the global mass and energy conservations [Eqs. (1)–(4)]. In

contrast, for the global NCP implementation, equation

system (22) requires a semi-smooth Newton scheme on the

global level.

Construction of Jacobian matrix

To construct the global Jacobian matrix, the derivatives of

governing equations with respect to the primary variables

are required. In the global NCP scheme, the derivatives are

straightforward to calculate, whereas in the local NCP, the

derivatives calculation is very complicated, due to a nested

thermodynamic model. In this work, the partial derivatives

of the secondary variable set US with respect to the primary

variable set UP can be obtained by:

oUS

oUP
¼ oF

oUS


 ��1
oF

oUP
; ð28Þ

where function F represents the equation system (20), and

the square matrix oF
oUS is the local Jacobian matrix for

equation system (20).

Jacobian matrix reduction

As already mentioned in Sect. (2.4.2), for global NCP

formulation, the Schur complement strategy can be applied

on the global Jacobian matrix, such that the size of global

linear system can be minimized. Special attention has to be

paid to the minimum function. For a Newton iteration l, the

Newton equation for NCP (27) can be easily obtained:

CG :

ðdSGÞl ¼ �ðSGÞl if SG � 1�
PNc

i¼1

xiG
� �

PNc

i¼1

ðdxiGÞ ¼ 1�
PNc

i¼1

xiG
� �l

if SG [ 1�
PNc

i¼1

xiG
� �

8
>>>><

>>>>:

ð29Þ

CL :

ðdSGÞl ¼ 1� ðSGÞl; if 1� SG � 1�
PNc

i¼1

xiL
� �

xiG
oKi

oP
ðdPÞl þ xiG

oKi

oT
ðdTÞl

þ
PNc

i¼1

o

oxiG
KixiG
� �
 �

dxiG
� �l¼ 1�

PNc

i¼1

KixiG
� �l

if 1� SG [ 1�
PNc

i¼1

xiL
� �

:

8
>>>>>>>><

>>>>>>>>:

ð30Þ

Here d� indicates the change of primary variable in each

Newton iteration. Function K is defined in Eq. (21). Sub-

stituting (29) and (30) into the global Jacobian matrix leads

to a linear system with ðNc þ 1Þ primary unknowns, while

the secondary unknowns can be computed in the local post-

processing procedure, which are summarized as follows

• In the single-phase zone, the following linear system

needs to be solved

oH

oP

oH

oxiG

oH

oT

� � dP

dxiG
dT

2
64

3
75 ¼ �H

� dSG
oH

oSG
� dxNc

G

oH

oxNc

G

; i 2 ½1; . . .;Nc � 1�:

ð31Þ

• While in the two-phase zone, the linear equation is

given as

oH

oP

oH

oSG

oH

oxiG

oH

oT

� �

�H� dxNc�1
G

oH

oxNc�1
G

� dxNc

G

oH

oxNc

G

; i 2 ½1; . . .;Nc � 2�:

ð32Þ

Therefore, by conducting the Schur complement pro-

cedure in global NCP formulation, the reduced linear

system holds the same size as local NCP formulation, i.e.,

ðNc þ 1Þ. After the linearization of the global governing

equations, a sparse and asymmetric linear system is

assembled and needs to be solved. The BiCGStab solver

from the LIS library (Nishida 2010) is employed with an

ILU preconditioner to obtain the solution.

Interface continuity requirement

When the model domain is heterogeneous, the neighboring

materials can have highly contrasted physical properties,

such as the capillary pressure and relative permeability.

Therefore, an accurate treatment of the interface condition

should be addressed in the model in order to account for the

saturation jump at the material interface.

Let Xð1Þ and Xð2Þ be the two neighboring materials

characterized by two different Brooks–Corey type capillary

pressure relationships P
ð1Þ
c and P

ð2Þ
c . The corresponding

entry pressures P
ðjÞ
e ðj 2 f1; 2gÞ are assumed with:

P
ð1Þ
e \P

ð2Þ
e , i.e., Xð1Þ holds a smaller entry pressure. With

the requirement of cell-wise continuity, the capillary

pressure at the interface can be reformulated with the

known entry pressure value, following Bastian (2014).
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P
ð2Þ
c ¼ P

ð1Þ
c if P

ð1Þ
c �P

ð2Þ
e

P
ð2Þ
c ¼ P

ð2Þ
e if P

ð1Þ
c �P

ð2Þ
e

:

(

In the case of global NCP formulation, the saturation is

treated as primary variable which therefore requires the

capillary pressure to be prescribed at each node. Then, in

order to account for the saturation discontinuity, the satu-

ration at the interface should be regulated as the following

form:

S
ð2Þ
G ¼ Pð2Þ

c

� 	�1

Pð1Þ
c S

ð1Þ
G

� 	h i
; ð33Þ

where ðPð2Þ
c Þ�1

indicates the inverse function of the capil-

lary pressure relationship at sub-material domain Xð2Þ. For

the local NCP formulation, the overall molar fraction (Xi)

is chosen as the primary variable. A similar strategy is

applied to formulate the interface condition for Xi:

Xi;ð2Þ ¼
N

ð2Þ
L x

i;ð2Þ
L 1� S

ð2Þ
G

� 	
þ N

ð2Þ
G x

i;ð2Þ
G S

ð2Þ
G

N
ð2Þ
L 1� S

ð2Þ
G

� 	
þ N

ð2Þ
G S

ð2Þ
G

; ð34Þ

where S
ð2Þ
G is defined following Eq. (33). Besides, due to the

fact that saturation is selected as a secondary variable, it is

calculated in local problem by the primary variable P,Xi,T.

S
ð2Þ
G ¼ P

ð2Þ
c

� 	�1

P
ð1Þ
c S

ð1Þ
G

� 	h i

S
ð1Þ
G ¼ S

ð1Þ
G Pð1Þ;Xi;ð1Þ; T ð1Þ� �

8
<

:

For the local NCP formulation, the interface conditions

have already been incorporated into the local problem and

solved on each integration point, and these conditions are

further guaranteed at each node throughout the global

Newton iterations.

Numerical experiments

In order to analyze the accuracy and computational perfor-

mance of the two aforementioned numerical formulations,

three benchmarks have been adopted with increasing com-

plexity. First, theMoMaS benchmark simulates gasmigration

through a homogeneous bentonite formation (‘‘Benchmark I:

TheMoMaS benchmark’’ section). Second, the thermal effect

is taken into account in the heat pipe problem (‘‘Benchmark II:

heat pipe problem’’ section), in which both gas and liquid

phases are allowed to emergeordisappear. Finally, theKueper

experiment (‘‘Benchmark III: Kueper experiment’’ section) is

modeled to investigate the influence of heterogeneous media

properties and strong gravitational effects. The detailed con-

stitutive relationships of the model with regard to the bench-

marks are given in ‘‘Appendix’’.

Implementation

All numerical experiments are conducted with the Open-

GeoSys software (Kolditz et al. 2012; Huang et al. 2015).

Both fixed and adaptive time-stepping features are

employed. With the later case, the successive time-step size

is doubled when the number of Newton iterations in the

previous time step is less than 7, and it will be cut into half

if more than 15 iterations are required. Meanwhile, the

nonlinear solver convergence criteria for the L2-norm of

the residual vectors are set to 10�14 for the local problem

and 10�7 for the global one. Note that local tolerance must

be lower because solution accuracy of the local problem is

crucial for the convergence on global level. All bench-

marks are performed on a computer equipped with 8 GB of

memory and an Intel(R) Core(TM) I5-3230 processor @2.6

GHz. It is noted although the OpenGeoSys software has the

capability of running parallel simulations (Wang et al.

2009), only single-CPU core serial computation is per-

formed here, so that the time spent in different parts of the

simulation can be more directly analyzed.

Benchmark I: The MoMaS benchmark

The MoMaS benchmark was proposed by Bourgeat et al.

(2009a), aiming to simulate the gas phase appearance and

disappearance in a nuclear waste repository. The model is

composed of a 2D rectangular domain of 20 � 200 m,

representing the bentonite back-fill in the repository. The

domain is initially water saturated (�w) and bears a liquid

pressure PL ¼ 1� 106 Pa. The gas phase consists of

hydrogen (�h) and water vapor. Dirichlet conditions are

imposed on the outflow side with PL ¼ 1� 106 Pa,

SG ¼ 0, Xh ¼ 0:0. A hydrogen injection flux of

5:57� 10�6 kg �m�2a�1 is applied on the inflow boundary

for the first 5� 105 a, and no flow applied afterward. These

boundary settings enable the gas phase to first appear and

then vanish from the system. The model parameters used in

this benchmark are listed in Table 1. Two tests are per-

formed within this benchmark.

• In the first test, the primary variable switching (PVS)

approach (Coats et al. 1980), the local and global NCP

formulations are all applied with adaptive time-step-

ping (‘‘Implementation’’ section) control. The initial

and minimal time-step size Dtmin is set to 100 a, and the

maximum allowed time-step size Dtmax is 5� 104 a.

The comparison aims at investigating the impact of

NCP implementation on the speed of convergence,

especially in the presence of phase transitions.

• The second test is performed with a fixed time-step size

of 5000 a. A special focus is placed on the comparison

of the computational complexity and distribution.
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Note that in this work, the overall computational cost

consists of three major components: the time dedicated

to the solution of the local problem, the assembly of the

Jacobian matrix and residual vector, and the solution of

the linear equation system.

s ¼ sloc þ sasm þ ssolver: ð35Þ

The local problem sloc mainly refers to the secondary

variable calculation, including the thermodynamic

calculation, and all derivatives of secondary variable

with respect to the primary unknowns. The assembly

time sasm also includes the Schur complement reduction

(‘‘Linearization strategy’’ section).

Benchmark II: heat pipe problem

The heat pipe problem was proposed by Udell and Fitch

(1985). In this benchmark, a heater is installed on the right-

hand side of the horizontal column with an initial water

saturation of 0.5. It generates a constant heat flux of

100 W m�2 and raises the temperature gradually above the

boiling point. Here, both thermal convection and conduc-

tion are considered along with the latent heat transfer, i.e.,

evaporation and condensation. In this context, the param-

eters used in this benchmark are listed in Table 2. The heat

conductivity for an unsaturated medium is given as

kðSGÞ ¼ kSL¼0
pm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� SGÞ

p
kSL¼1
pm � kSL¼0

pm

� 	
: ð36Þ

The Leverett function (Leverett et al. 1941) and Brooks–

Corey relationship (Brooks and Corey 1964) are applied to

describe the dependency of capillary pressure and relative

permeability on saturation. For the fluid properties of

water, the IAPWS (Wagner et al. 2000) formulation is

applied.

In this simulation, the comparison is made with adaptive

time-stepping control. The initial and minimal time-step

size Dtmin is set to 100 s, and the maximum time-step size

Dtmax is allowed to be 109 s.

Benchmark III: Kueper experiment

Kueper and Frind (1991) performed an experiment where

the DNAPL phase penetrated into an initially water-satu-

rated (SL ¼ 0) heterogeneous porous medium. A

50� 70 cm tank is packed with four types of sand. The

Brooks–Corey model is applied to describe the dependency

of capillary pressure and relative permeability on satura-

tion. The simulation is performed on an unstructured

meshes with varying number of elements. A fixed time-step

size Dt ¼ 20 s is adopted and lasts for a span of 800 s. The

parameters used in this benchmark are listed in Tables 3

and 4. Both NCP formulations are applied in comparison

with the PVS approach. In the simulation, a modification is

made regarding the original experiment assumption by

allowing the dissolution of DNAPL which enables the

gradual phase appearance. The focus therefore lies on the

DNAPL phase appearance in heterogeneous porous med-

ium, as well as the influence of highly contrasted capillary

pressure and relative permeability properties. Special

interests are also focused on the numerical dispersion,

which tends to occur at the interface of different materials,

as well as phase boundaries.

Results

The MoMaS benchmark

In Fig. 1, the simulated saturation and liquid phase pressure

are compared against reference values obtained by PVS

approach. Both the local and global NCP formulations are

able to correctly reproduce the characteristic features of the

MoMaS benchmark, as shown by the excellent agreement

of simulated and reference solutions.

Regarding the efficiency, two phenomena are observed.

(1) In comparison with the PVS approach, both NCP for-

mulations exhibit better efficiency in terms of Newton

convergence speed (Fig. 2b; Table 5). In particular with the

most refined mesh (4� 105 elements), both NCP formu-

lations cost roughly 15% fewer Newton iterations. (2) As

shown in Fig. 3, when phase transition occurs (gas phase

appears at around 1:4� 105 a, and vanishes at 7� 105 a),

the minimum time-step size of the PVS approach decreases

to about 600 a. In comparison, the two NCP formulations

are able to take time-step sizes of 4000 a. The possibility of

larger time steps illustrates both efficiency and robustness,

Table 1 Parameter values used in the MoMaS benchmark

Parameter Symbol Value Unit

Water density qw 1� 103 kg m�3

Molar mass of water Mw 18� 10�3 kg mol�1

Molar mass of hydrogen Mh 2� 10�3 kg mol�1

Henry constant H 7:65� 10�6
mol ðPa m3Þ�1

Viscosity of gas lG 9� 10�6 Pas

Viscosity of water lL 1� 10�3 Pas

Diffusion coefficient Dh
L 3� 10�9 m2 s�1

Porosity / 0.15 -

Intrinsic permeability K 5� 10�20 m2

van Genuchten parameter n 1.49 -

Residual saturation SL;res 0.4 -
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and this feature is not altered by the increasing number of

elements (Fig. 2a).

In the second test, both NCP formulations require sim-

ilar Newton iterations with a slightly better behavior of

local NCP on the finer mesh (Table 6). We further plot the

number of Newton iterations per time step required by two

formulations in Fig. 4. When the phase transition occurs,

the global NCP requires one more iterations per time step

over the local one.

Furthermore, the computational time dedicated to the

local problem-solving, the assembly, and linear solver is

listed in Table 6 and depicted in Fig. 5, to reveal their

different requirements on computational resources. The

global NCP formulation is observed to be consistently 10–

Table 2 Parameters applied in

the heat pipe problem
Parameters name Symbol Value Unit

Intrinsic permeability K 10�12 m2

Porosity / 0:4 -

Latent heat of vaporization of water hDe 2258 kJ kg�1

Heat conductivity of fully saturated porous medium kSL¼1
pm

1:13 W ðm KÞ�1

Heat conductivity of dry porous medium kSL¼0
pm

0:582 W ðm KÞ�1

Heat capacity of the soil grains cs 700 J ðkg KÞ�1

Density of the soil grain qs 2600 kg m�3

Density of the water qw 1000 kg m�3

Density of the air qa 0:08 kg m�3

Dynamic viscosity of water lw 2:938� 10�4 Pas

Dynamic viscosity of air laG 2:08� 10�5 Pas

Dynamic viscosity of steam lwG 1:20� 10�5 Pas

Diffusion coefficient of air in gas Da
G 2:6� 10�5 m2 s�1

Diffusion coefficient of air in liquid water Da
L 3� 10�9 m2 s�1

Table 3 Fluid and medium

properties in Kueper experiment
Parameter Symbol Value Unit

Density of water qw 1000 kg m�3

Density of DNAPL qD 1460 kg m�3

Viscosity of liquid phase lL 1� 10�3 Pas

Viscosity of non-wetting phase lN 0:9� 10�3 Pas

Molar mass of water Mw 0.01 kg mol�1

Molar mass of DNAPL MD 0.1414 kg mol�1

Porosity / 0.3 –

Henry constant H 1� 10�3
mol ðPa m3Þ�1

Gravitational acceleration g 9.8 m s�2

Table 4 Hydraulic properties of sands for the Brooks–Corey model

Property Pe(Pa) kð�Þ Swrð�Þ kðm2) nð�Þ

1 369.73 3.86 0.078 5:04� 10�10 0.40

2 434.45 3.51 0.069 2:05� 10�10 0.39

3 1323.95 2.49 0.098 5:26� 10�11 0.39

4 3246.15 3.30 0.189 8:19� 10�12 0.41

Fig. 1 Evolution of gas phase saturation (left axis) and liquid phase

pressure (right axis) at the inflow boundary over the total simulation

time for global and local NCP formulation, compared against the

results generated by PVS approach
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20% faster than the local one. As no nested Newton iter-

ations are required to solve local thermodynamic equilib-

rium, it leads to an approximately 20% faster local problem

solution. The global NCP requires about 10% more time

for the linear solver. Such a difference can be attributed to

the fact that, in global NCP, the variation of the Jacobian

matrix structure (Sect. 3.2) degrades the performance of

preconditioner operation prior to the linear solver. With

regard to the assembly time, the global NCP requires up to

5% more time over the local one. That might be because of

using the Schur complement strategy. However, such dif-

ference only accounts for 3% of overall computational

time. It is further observed that the local problem-solving

represents about 60–70% of the entire computational time,

which favors the global NCP. Further tests with different

mesh sizes show that the advantage of the global NCP is

consistent from a coarse mesh of 800 elements up to a

refined mesh of 4� 105 elements (Table 6).

The heat pipe problem

In Fig. 6, the evolution of liquid saturation and temperature

under steady state is plotted over the domain. Figure 7

presents the relative deviation of liquid saturation and

temperature compared against the analytical solution in

terms of global and local NCP formulation. A good

agreement can be found between NCP formulations and the

semi-analytical solution. The numerical performance and

Fig. 2 Overall time steps (a) and global Newton iteration steps evolution (b) for varying number of elements, compared against the results

produced by primary variable switching (PVS) model

Table 5 Comparison of numerical behavior between two NCP formulations and PVS approach under adaptive time-stepping control for the

simulation of MoMaS benchmark (GNCP and LNCP indicate the global and local NCP formulations, respectively)

Element Newton iterations CPU time (s): total/per Newton

GNCP LNCP PVS GNCP LNCP PVS

800 192 196 198 134/0.683 141.4/0.734 136/0.681

4000 217 211 222 387/1.834 443/2.041 391/1.76

40,000 245 241 264 16,158/67.05 19,305/78.8 16,793/63.061

400,000 279 271 314 227,480/839.41 254,560.8/912.40 260,925/830.79

Fig. 3 Evolution of time-step size with respect to the overall

simulation time required by three different numerical schemes to

simulate the heat pipe problem with a mesh of 4000 elements
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computational cost of both NCP formulations are com-

pared against that of the PVS approach. Detailed infor-

mation regarding mesh size, overall computation time, total

time steps, and global Newton iterations is listed in

Table 7. It is observed that both NCP formulations require

approximately 15% fewer overall time steps and 25%

fewer Newton iterations in comparison with the PVS

approach. Figure 8 exhibits the overall and averaged

Newton iterations required by the three different models.

Although the local NCP requires a lower number of total

time steps and Newton iterations, the global NCP is the

most efficient formulation in all considered cases with the

least computational time. Besides, Fig. 9 provides the time-

step size evolution with respect to the simulation time for

three models. It highlights that after about 0:8� 106 s, the

time-step size in PVS scheme starts to break down to a very

small value (around 1000 s), which is triggered by the

complete evaporation of the liquid phase in the vicinity of

the heated boundary. Similar trend can be observed in both

NCP formulations. Yet, the allowed step sizes are much

larger (around 5000 s).

Moreover, the distribution of time spent on different

parts of the simulation produces identical results to those

obtained in the MoMaS benchmark. Figure 10 demon-

strates that the global NCP consumes around 30% less time

on the local problem at the expense of spending approxi-

mately 15% more time on linear solver and 10% more

assembly time over the local one. This again leads to 25%

savings in the overall computational time.

Table 6 Comparison of

numerical behavior between

global and local NCP

formulation under constant

time-step size for the simulation

of MoMaS benchmark

Element Newton Linear solver (s) Local problem (s) Global assembly (s)

GNCP LNCP GNCP LNCP GNCP LNCP GNCP LNCP

800 581 584 69.186 66.85 378.78 421.502 6.345 5.08

4000 611 608 364.34 384.34 1585.13 1816.48 89.997 80.23

40,000 661 648 5311.9 5129.96 19,845.12 23,159.98 3201.91 3020.65

400,000 839 811 64,370.8 63381.5 163,110.9 201,079 27,161.9 25,614

Fig. 4 The number of global Newton iterations per time step for two

NCP formulations with a mesh of 40,000 elements

Fig. 5 Comparison of overall computation time for varying number

of elements. The Pie charts represent the computation time distribu-

tion on a mesh with 4� 105 elements for local NCP scheme (upper-

left) and global NCP scheme (bottom-right), respectively

Fig. 6 Evolution of liquid saturation (right axis) and temperature (left

axis) over the whole domain at the steady state, compared against

semi-analytical solution (scatter symbol) as well as the results of PVS

scheme (dot curve)
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Kueper experiment

Figure 11 demonstrates that both NCP formulations are

capable of reproducing the DNAPL plume propagation

through heterogeneous permeable sandy layers while

bypassing the impermeable ones. To compare the numer-

ical dispersion at the interface of different media and phase

boundary, Fig. 12 plots the horizontal profile capillary

pressure at a depth of 0:45 m at t ¼ 320 s, generated by the

two NCP formulations and the PVS approach. The results

produced by the PVS approach are observed to exhibit

severe over- and undershooting. The oscillating capillary

pressure can be clearly identified at phase boundary. In

both NCP formulations, these oscillations are reduced

significantly, as shown by the red and green profiles in

Fig. 12. The minimum capillary pressure simulated by

global and local NCP formulations is 365.46 and 369.06 Pa

at the phase boundary, while the entry pressure is 369 Pa.

Such numerical oscillation imposes challenge in nonlinear

solver which can be represented in the Newton iterations

Fig. 7 Relative deviation of saturation and temperature compared against the semi-analytical solution

Table 7 Comparison of

numerical behavior between

global and local NCP

formulations and the PVS

model for heat pipe problem

under adaptive time-stepping

control

Elements Total steps Newton iterations CPU time (s)

GNCP LNCP PVS GNCP LNCP PVS GNCP LNCP PVS

1600 214 211 334 746 735 1534 8592 10,840.1 17,430.7

3200 329 325 503 1216 1195 2154 31,984 35,820.4 47,812

6400 351 347 516 1421 1401 2214 71,550 89,781 102,308

12,800 579 570 745 2120 2081 3052 246,317 294,521 332,521

Fig. 8 Overall Newton iterations and averaged Newton iterations per time step required by both NCP formulations for varying number of

elements, compared against the results generated by PVS model
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required by different models. Table 8 illustrates local NCP

is the most robust model with the least number of Newton

iteration required. Nevertheless, the global NCP delivers

the fastest simulation due to the least CPU time cost,

although up to 10% more Newton iterations are required

over the local NCP.

Furthermore, the overall computational effort is also

compared in terms of detailed computational complexity,

as shown in Fig. 13. The same tendency is observed as in

the previous benchmarks. The global NCP consumes 10%

more linear solver time, while it benefits from 25% less

time spent on solving local constitutive problems. All these

contribute to approximately 15% savings in the overall

computation time (cf. Table 9).

Discussion

Comparison between NCP formulations and PVS

approach

With the conventional PVS approach, when phase transi-

tion occurs, primary variables have to be switched between

saturation Sa and phase composition xia. On the one hand,

the local switch of primary variables often results in dif-

ferent primary variables associated within different ele-

ments, which might degrade convergence of the nonlinear

solver or even failure. On the other hand, primary variable

switching might result in the conservation equations

becoming redundant. Therefore, the rank of global Jaco-

bian matrix is constantly changing along with the phase

status, which further degrades the linear solver perfor-

mance. Such problems are obviously addressed in the

simulated benchmarks. In comparison, a fixed set of pri-

mary unknowns and governing equations are adopted in

both NCP formulations. This feature enables the nonlinear

system produced by NCP to be solved by semi-smooth

Newton iterations with quadratic convergence.

Furthermore, with the NCP constraints, all state variables

remain within the physical boundary during Newton itera-

tions. Such feature enables the NCP formulations to be

robust when only a small amount of a certain component is

present in the system. One example is the heat pipe problem.

At the heated boundary, after the boiling temperature is

reached (about 2� 105 s), air is driven away by the water

vapor such that itsmolar fraction approaches zero (cf. Fig. 9).

In this case, the air molar fraction can be easily driven into

negative values during the global Newton iterations. Such

non-physical values can result inmore nonlinear iterations or

even divergence. The conventional strategy that is applied in

the PVS approach is to decrease the time-step size and set a

small tolerance, e.g., 10�9, for the global Newton iteration.

Nevertheless, by applying the NCP constraints on the molar

fraction, non-physical values can be avoided and a relatively

larger time-step size is allowed in comparison with the PVS

approach. The improvements are demonstrated in Fig. 9.

It is worth noting that in terms of the computational time

per Newton iteration, the NCP formulations are slower than

the PVS approach (cf. Tables 5, 7, 8). That is because, when

phase disappearance occurs, the NCP formulations still

require the calculation of the phase composition in the absent

phase, which is achieved by assuming the thermodynamic

equilibrium between the present phase and the absent phase.

Such calculations can be skipped in PVS approach by simply

setting the state variables to zero. However, in most cases of

compositional two-phase flow, the higher computational cost

perNewton iteration can be amortized by fewer time steps and

fewer global Newton iterations.

Fig. 9 Evolution of time-step size for three different models on a

mesh with 1600 elements

Fig. 10 Comparison of overall computation time for varying number

of elements. The pie charts represent the computational time

distribution on a mesh with 12,800 elements for the local NCP

(upper-left) and global NCP formulations (bottom-right), respectively
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Comparison of local and global NCP

implementations

In this section, the advantages and drawbacks of both NCP

formulations are discussed in several aspects.

Computational cost

In the local NCP formulation, a nested Newton scheme is

required to handle the nonlinearity associated with ther-

modynamic model and NCP constraints, whereas in global

NCP, the thermodynamic model and NCP constraints are

coupled with conservation equations and solved within the

same Newton loop. Such consistent treatment has the

advantage that no nested iteration is necessary for captur-

ing phase transition. This feature significantly relieve the

nonlinearity on local level; therefore, global NCP exhibits

a higher computational efficiency for local problem-

solving.

After applying the Schur complement procedure, the

linear system in the global NCP is in the same size as the

local one. Such operation is demonstrated to only account

for a small computational resources (remains below 3% of

the entire computational time). However, it can be

observed that an implicit ‘‘switch’’ of the secondary vari-

ables is included in the linear equation system [Eqs. (31)

and (32)], which could potentially degrade the

Fig. 11 Comparison of the DNAPL saturation obtained by different

models with respect to different time steps (100, 240, 320 s) on a

coarse mesh (2000 elements). The left column is the results from PVS

approach. The middle column shows the results of global NCP

formulation. The right column represents the results of local NCP

formulation

Fig. 12 Comparison of horizontal capillary pressure profile at

z ¼ 0.45 m
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preconditioner performance during the linear solve.

Meanwhile, the entries in the global Jacobian matrix of the

global NCP have a wider range in magnitudes. Such dif-

ference can potentially cause a singular or ill-conditioned

matrix, and the resulting linear system requires a strong

preconditioner for solution, and also more iterations during

it. Such challenges are evident in all simulated cases as

more linear solver time is required by the global NCP

formulation.

To summarize, due to the tight coupling and strong

nonlinearity incorporated in compositional two-phase flow,

local problem-solving often claims the majority of total

computational effort, which makes the global NCP

formulation the most efficient. However, as pointed out by

Lauser (2013), the linear solver is the main limiting factor

for the parallel performance, whereas the local problem-

solving and the assembly can achieve more than 100%

speedup with up to 256 cores. This suggests that, with the

parallel scheme applied, the local NCP formulation might

again be favorable.

Model robustness

The benchmarks simulated here show that material

heterogeneity has a big impact on the model accuracy and

robustness. Within a homogeneous medium, both local and

global NCP formulations give smooth and accurate results;

meanwhile, similar Newton iterations and time steps are

required with a slightly better behavior of the local NCP

formulation. Such advantages are further increased in

heterogeneous medium (e.g., the Kueper problem). The

local NCP gives more stable and accurate results compared

to the global one, as reflected by the smooth curve shown at

the material interfaces and phase boundary in Figs. 11 and

12. The oscillation at the material interface and phase

boundary originates from the nature of the problem. In

heterogeneous media, all secondary variables as well as the

NCP formulations have to be calculated within a repre-

sentative volume holding the same material properties. In

the local NCP, saturation and all its dependencies are

clearly defined in each material domain, while in the global

NCP, the saturation is a compound value defined on the

nodal level, reflecting the contributions from all neigh-

boring material domains simultaneously.

Table 8 Comparison of

numerical behavior between

different models in Kueper

benchmark

Elements Newton steps CPU time (s): total/per Newton

GNCP LNCP PVS GNCP LNCP PVS

500 122 129 143 41.85/0.34 79.12/0.61 45.78/0.32

2000 154 143 175 131.28/0.85 187.81/1.071 151.6/0.846

8000 179 175 197 1081.9/6.045 1248.19/7.133 1353.41/5.868

40,000 201 191 244 13,997.73/69.63 15,701.3/81.2 17,154.41/66.58

400,000 214 198 318 278,511.4/1201.6 319,724.9/1604.4 337,562.47/1061.5

Fig. 13 Comparison of overall computation time for varying number

of elements in the simulation of Kueper problem. The pie charts

represent the computation time distribution on a mesh with 4 � 105

elements for local NCP (upper-left) and global NCP formulations

(bottom-right)

Table 9 Comparison of

distribution of overall

computation resources between

global and local NCP

formulation in Kueper

benchmark

Elements Linear solve (s) Local problem (s) Global assembly (s)

GNCP LNCP GNCP LNCP GNCP LNCP

500 7.93 7.35 31.8 39.38 1.1 0.9

2000 32.95 30.53 182.83 224.43 5.3 3.8

8000 171.7 160.17 801.02 1017.15 38.27 32.9

40,000 3313.73 3013.75 9185.62 10,344.41 1501.8 1350.69

400,000 78,684.47 72,033.9 162,744.95 213,430 37,083.21 34,410.9
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Conclusions

In this work, two different implementations of the nonlinear

complementary problems (NCP) have been compared for

simulating (non)-isothermal compositional two-phase flow

with phase transition phenomena. Three well-established

benchmarks have been employed to analyze the efficiency

and robustness of these numerical models. It is found that

both local and global NCP formulations deliver results in

good agreement with those from conventional primary

variable switching (PVS) approaches. It is also found that

NCP formulations are numerically more robust and efficient

for handling phase transition, as shown by the fewer global

Newton iterations and larger time-step sizes. In both

homogeneous and heterogeneous media, the global NCP

formulation is around 20% faster than the local one. How-

ever, in heterogeneous media, the local NCP formulation is

recommended, as it delivers a more accurate and

stable evaluation of capillary pressure and relative perme-

ability. The slightly longer computation time is a good trade-

off for suppressing numerical oscillations at the interface of

different media or at the location of phase transition.
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Appendix

The constitutive relationships

We consider a generic system consisting of two phases

a 2 ½G; L� and two components i 2 ½a; b�, in which a

denotes the gas component which is allowed to dissolve in

the liquid phase and b indicates the water component and

can vaporize into the gas phase. The local thermodynamic

equilibrium is described by fugacity equalities for each

component:

f iG ¼ f iL; i 2 ½a; b�; ð37Þ

where f iG and f iL are the fugacities of ith component in gas

and liquid phase, respectively. They can be described as

follows:

f ia ¼ Ui
ax

i
aPa; ð38Þ

Here, Ui
a indicates the fugacity coefficient. Due to the

assumption that the gas behaves as an ideal gas, we have

Ui
G ¼ 1. Then, in the gas phase, we have:

f iG ¼ xiGPG; i 2 ½a; b�: ð39Þ

If the solubility of gas component in the liquid phase is

assumed to be low, the molar fraction xaL can be determined

by Henry’s law

xaL ¼ PGH
aðTÞ

NL

xaG; ð40Þ

where NL indicates the molar density of liquid phase and

HaðTÞ is the Henry coefficient for gas component a, which

is only dependent on temperature T. For example, in heat

pipe problem (Sect. 4.3), the temperature dependence of

the Henry coefficient of air dissolved in water is given by

(Helmig et al. 1997)

HaðTÞ ¼ ð0:8942 þ 1:47 expð�0:04394TÞÞ � ð1e� 10Þ:
ð41Þ

Then, the molar fraction of the water component b in the

liquid phase is characterized by the Raoult law:

xbL ¼ PG

Pvap

xbG ð42Þ

with Pvap standing for the vapor pressure of water com-

ponent, and it is further regulated as follows:

Pvap ¼ Psatexp
PG � PL

NLRT


 �
ð43Þ

with Psat indicating the vapor saturation pressure of pure

water, which is given by Clausius–Clapeyron equation

PsatðTÞ ¼ P0 exp
1

T0
� 1

T


 �
hDeM

w

R

� �
; ð44Þ

where T0 ¼ 373K;P0 ¼ 105Pa, hDe is enthalpy of vapor-

ization, and Mw is molar mass of water.
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a.3 code availability

All the numerical algorithms and models are implemented in the
framework of OpenGeoSys (V.6). OpenGeoSys is an open source sci-
entific software and freely available to use. The source codes cor-
responded to each benchmark or application case are listed in the
follow, and they can be freely accessed by following the instruction
at: http://www.opengeosys.org/.

• The Benchmark I: Drying by gas injection presented in Section
8.1.1 adopts the source code at:
https://github.com/Yonghui56/ogs/tree/Andra_case

Note that it is a modified version of ”TwoPhaseComponentPP”
process in official OpenGeoSys (V.6). The difference is a modi-
fied van Genuchten curve is adopted in order to keep consistent
with the original benchmark concept.

• All the benchmark cases presented in Section 8.2 adopt the
source code at:
1. For the isothermal cases: https://github.com/Yonghui56/

ogs/tree/twophasecomponentpp_co2.
Note that it is a modified version of ”TwoPhaseComponentPP”
process in official OpenGeoSys (V.6). The Equation of State
(EoS) for CO2 as described in 5.2 is adopted in this model.
2. For the non-isothermal case: https://github.com/ufz/ogs/
tree/master/ProcessLib/ThermalTwoPhaseFlowWithPP

• The benchmarks presented in Section.8.3 adopts a modified ver-
sion – OpenGeoSys-MP-LT which is also based on the frame-
work of OpenGeoSys (V.6). The source code can be freely ac-
quired via the link: https://github.com/Yonghui56/ogs/tree/
carbonation_ncomp_altern. Meanwhile, the version of OpenGeoSys-
GEM modified for the comparison and validation of the look-
up table based model is available from http://github.com/

kosakowski/OGS5GEMDEV.git. The repository also includes the
input files for the benchmark calculations in the folder:
./benchmarks/LookUp-Table. The GEM-Selektor V3 software
package used to calculate the look-up table is available from
http://gems.web.psi.ch . The GEM-Selektor V3 project with the
thermodynamic setup and the process script is available from
the last author (georg.kosakowski@psi.ch) upon request.

• The benchmarks presented in Section 1.1 adopt the source code
which can be freely accessed via the following links:
1. The local-NCP model can be found at: https://github.com/
ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPrho

2. The global-NCP model can be found at: https://github.

com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/

http://www.opengeosys.org/
https://github.com/Yonghui56/ogs/tree/Andra_case
https://github.com/Yonghui56/ogs/tree/twophasecomponentpp_co2
https://github.com/Yonghui56/ogs/tree/twophasecomponentpp_co2
https://github.com/ufz/ogs/tree/master/ProcessLib/ThermalTwoPhaseFlowWithPP
https://github.com/ufz/ogs/tree/master/ProcessLib/ThermalTwoPhaseFlowWithPP
https://github.com/Yonghui56/ogs/tree/carbonation_ncomp_altern
https://github.com/Yonghui56/ogs/tree/carbonation_ncomp_altern
http://github.com/kosakowski/OGS5GEMDEV.git.
http://github.com/kosakowski/OGS5GEMDEV.git.
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPrho
https://github.com/ufz/ogs/tree/master/ProcessLib/TwoPhaseFlowWithPrho
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
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FemCompMultiPhaseGlobalComplementary

3. The referenced P-P model can be accessed at: https://

github.com/Yonghui56/ComponentialMultiphase/tree/master/

UserModules/FemCompMultiPhasePressureForm

• The Richards flow model which is not presented in this work
but can be served as complementary model to the current work,
is also implemented in the OpenGeoSys (V.6) software. The
source code can be found at: https://github.com/ufz/ogs/

tree/master/ProcessLib/RichardsFlow

https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhaseGlobalComplementary
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhasePressureForm
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhasePressureForm
https://github.com/Yonghui56/ComponentialMultiphase/tree/master/UserModules/FemCompMultiPhasePressureForm
https://github.com/ufz/ogs/tree/master/ProcessLib/RichardsFlow
https://github.com/ufz/ogs/tree/master/ProcessLib/RichardsFlow
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[17] I. Ben Gharbia and J. Jaffré. “Gas phase appearance and disap-
pearance as a problem with complementarity constraints”. In:
Mathematics and Computers in Simulation 99 (2014), pp. 28–36.

[18] I. B. Gharbia, E. Flauraud, A. Michel, et al. “Study of composi-
tional multi-phase flow formulations with cubic eos”. In: SPE
Reservoir Simulation Symposium. Society of Petroleum Engineers.
2015.

[19] G. Singh and M. F. Wheeler. “Compositional flow modeling us-
ing a multi-point flux mixed finite element method”. In: Com-
putational Geosciences (2015). issn: 1420-0597. doi: 10 . 1007 /

s10596-015-9535-2. url: http://link.springer.com/10.
1007/s10596-015-9535-2.

[20] J. Boston and H. Britt. “A radically different formulation and so-
lution of the single-stage flash problem”. In: Computers & Chem-
ical Engineering 2.2-3 (1978), pp. 109–122.

[21] R. Zaydullin, D. V. Voskov, S. C. James, H. Henley, and A. Lu-
cia. “Fully compositional and thermal reservoir simulation”. In:
Computers & Chemical Engineering 63 (2014), pp. 51–65.

[22] L. C. Young, R. E. Stephenson, et al. “A generalized composi-
tional approach for reservoir simulation”. In: Society of Petroleum
Engineers Journal 23.05 (1983), pp. 727–742.

https://doi.org/10.1007/s10596-015-9535-2
https://doi.org/10.1007/s10596-015-9535-2
http://link.springer.com/10.1007/s10596-015-9535-2
http://link.springer.com/10.1007/s10596-015-9535-2


Bibliography 60

[23] E. Marchand, T. Müller, and P. Knabner. “Fully coupled gener-
alized hybrid-mixed finite element approximation of two-phase
two-component flow in porous media. Part I: formulation and
properties of the mathematical model”. In: Computational Geo-
sciences 17.2 (2013), pp. 431–442.

[24] O. Kolditz, S. Bauer, L. Bilke, N. Böttcher, J.-O. Delfs, T. Fischer,
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