25 research outputs found

    Are faults localizable?

    Get PDF

    A Fault Localization and Debugging Support Framework driven by Bug Tracking Data

    Full text link
    Fault localization has been determined as a major resource factor in the software development life cycle. Academic fault localization techniques are mostly unknown and unused in professional environments. Although manual debugging approaches can vary significantly depending on bug type (e.g. memory bugs or semantic bugs), these differences are not reflected in most existing fault localization tools. Little research has gone into automated identification of bug types to optimize the fault localization process. Further, existing fault localization techniques leverage on historical data only for augmentation of suspiciousness rankings. This thesis aims to provide a fault localization framework by combining data from various sources to help developers in the fault localization process. To achieve this, a bug classification schema is introduced, benchmarks are created, and a novel fault localization method based on historical data is proposed.Comment: 4 page

    You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems

    Get PDF
    Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by `tweaking' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.Comment: Accepted by ICST 201

    Locating Bugs without Looking Back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, where is it located in the source code files? Information retrieval (IR) approaches see a bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, most of state-of-the-art IR approaches rely on project history, in particular previously fixed bugs and previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring is based on heuristics identified through manual inspection of a small set of bug reports. We compare our approach to five others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 28. For example, on average we find one or more affected files in the top 10 ranked files for 77% of the bug reports. These results show the applicability of our approach to software projects without history

    Extraction of Product Evolution Tree from Source Code of Product Variants

    Full text link
    Proceedings of the 17th International Software Product Line Conference SPLC '13 Proceedings of the 17th International Software Product Line Conferenc

    Spectrum-Based Fault Localization in Model Transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the essential mechanisms for manipulating and transforming models. The correctness of software built using MDE techniques greatly relies on the correctness of model transformations. However, it is challenging and error prone to debug them, and the situation gets more critical as the size and complexity of model transformations grow, where manual debugging is no longer possible. Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty. In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different stateof- the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the best techniques, namely Kulcynski2, Mountford, Ochiai, and Zoltar, lead the debugger to inspect a maximum of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a static approach for fault localization in model transformations, observing a clear superiority of the proposed SBFL-based method.Comisión Interministerial de Ciencia y Tecnología TIN2015-70560-RJunta de Andalucía P12-TIC-186

    Ranking-based approaches for localizing faults

    Get PDF
    corecore