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Are Faults Localizable?

Lucia, Ferdian Thung, David Lo, and Lingxiao Jiang

School of Information Systems, Singapore Management University

{lucia.2009,ferdianthung,davidlo,lxjiang}@smu.edu.sg

Abstract—Many fault localization techniques have been
proposed to facilitate debugging activities. Most of them
attempt to pinpoint the location of faults (i.e., localize faults)
based on a set of failing and correct executions and expect
debuggers to investigate a certain number of located program
elements to find faults. These techniques thus assume that faults
are localizable, i.e., only one or a few lines of code that are
close to one another are responsible for each fault. However,
in reality, are faults localizable? In this work, we investigate
hundreds of real faults in several software systems, and find
that many faults may not be localizable to a few lines of code
and these include faults with high severity level.

Keywords-Fault Localization; Fault Locality; Bug Severity

I. INTRODUCTION

Bugs are one major contributor to high software cost, and

many automated debugging techniques have been proposed

to reduce the cost of debugging. One kind of such techniques

is fault localization that aims to pinpoint program elements

responsible for a bug (i.e., the root causes, or a fault, of

a bug). Many of these techniques analyze program spectra

(i.e., a set of profiles of both correct and failed executions),

with the goal of locating likely faulty program elements [8],

[12], [18], [19].

Fault localization often assumes that faults are localizable,

i.e., a fault is confined to one or a few lines of code

that are close to each other in a software system. Most

fault localization techniques would rank program elements

in terms of their suspiciousness (i.e., the likelihood of a

program element to be faulty), and expect developers to

traverse this list of program elements in order and be able to

decide whether an element is a fault by just inspecting that

element. Past studies on fault localization often use faults

that are injected to only one or a few locations, making the

evaluation of the techniques biased.

The question is whether it is indeed the case that faults

are confined to a few lines of code in real systems. Are

faults localizable? This research question has important

implications if faults turn out to be non-localizable. We may

then need to re-consider the applicability of fault localization

and design new approaches to aid developers in debugging

non-localizable faults.

In this paper, we perform an empirical study by analyzing

software from a public bug repository—iBugs [5] and the

JIRA repository of Lucene. We consider hundreds of real

bugs in three real systems: AspectJ, Rhino, and Lucene,

and investigate how localized or spread-out the locations of

faulty program elements are.

The contributions of this work are as follows:

• We highlight an important research question on whether

faults are localizable in real software.

• We present an empirical study on three Java programs

and note that many faults are not localized.

• We analyze whether severe faults are localizable.

The paper is organized as follows. Section II presents our

dataset. Section III presents the setup of our study along

with important manual cleanup of the dataset, the various

locality definitions, and the research questions. Section IV

presents our findings. We present related work in Section V

and conclude with future work in Section VI.

II. DATASET

We analyze the locality of faults in two Java programs

(Rhino and AspectJ) from iBugs repository [5] and a third

Java program Lucene collected from JIRA [1] by another

research team at UC Davis. Rhino is a Javascript interpreter

written in Java with code size of about 49kLOC. There

are 32 buggy versions of Rhino in iBugs. AspectJ is a

compiler for aspect-oriented programming in Java with code

size of about 75kLOC, and iBugs contains 350 of its buggy

versions. Lucene is a text search engine library with code

size of about 88kLOC (version 2.9).

The iBugs repository stores both pre-fix versions that

contain bugs (buggy versions) and the corresponding post-

fix versions where the bugs are fixed. Each of the buggy

versions is assumed to contain one bug that may span across

multiple lines in multiple files. Information about each fix

is also provided based on the diff between the pre-fix and

post-fix versions, e.g. the numbers of changed lines, changed

methods, and changed files, and the severity level of the

bug. Similar information based on the diff between bugs and

corresponding fixes is also available for Lucene.

III. EMPIRICAL STUDY SETUP

A. Extracting Faults from Changes

In this paper, we are concerned with program elements

that are responsible, or are the root causes of a bug. The

information from our datasets is not directly usable because

the diff between a pre-fix and post-fix version may not

correspond to root causes due to various reasons. First, the

changed lines in the post-fix versions are often the treatment
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of a fault and may not be the root causes themselves. For

example, a piece of code may be moved around to make it

easier to implement the actual fix. Second, not all changed

lines are meant for fixing the bug. For example, previous

studies (e.g., [10]) show that some changes are non-essential,

such as changing indentation, adding comments, and code

refactoring that do not change the behavior of a program.

To recover actual root causes from all changes so as

to make our study more accurate, we perform a manual

investigation on all bugs in our dataset. For each bug, we

look at all of the changes between its pre-fix and post-

fix versions and the surrounding code of the changes to

decide which are the actual faulty lines in the pre-fix version,

excluding changes related formatting, variable renaming,

method renaming, refactoring, optimization, etc. We also

exclude bugs that are explicitly marked as enhancement in

the datasets, that do not contain any severity information,

and that only have faults in test code or comments. When we

deem there is ambiguity about where the actual faulty lines

are (e.g., adding an if statement that may return a method),

we conservatively treat such faults localizable by marking

only one or few lines as faulty. We end up with 374 bugs

with various numbers of manually labeled faulty lines: 32

for Rhino, 290 for AspectJ, and 52 for Lucene.

B. Definitions of Locality

In this paper, we define the locality of a fault based

on involved faulty program elements. We consider program

elements at three levels of granularity, including lines,

methods, and files, and also consider the spatial distances

among the program elements. The following is a list of

locality definitions that we use in our empirical evaluation.

[D1] Considering a line of code as a program element, we

define the locality L of a buggy version v as follows:

LD1(v) = the number of faulty lines.

[D2] Considering a method as a program element, we define

the locality L of a buggy version v as follows:

LD2(v) = the number of faulty methods.

[D3] Considering a file as a program element, we define the

locality L of a buggy version v as follows:

LD3(v) = the number of faulty files.

[D4] Considering the spatial distances among the faulty

lines, we define the locality L of a buggy version v
based on the number of faulty files nf and the gaps

among the faulty lines in every file Gline(file):
LD4(v) = (ΣfileGline(file) + nf − 1) × nf , where

Gline(file) is the distance between the first and last

faulty lines in the file.

C. Research Questions

Based on the locality definitions, we consider the follow-

ing research questions:

RQ1 Are faults localizable? How many faults could be

localized to a few program elements?

RQ2 Are the most severe faults localizable?

IV. RESULTS AND DISCUSSION

A. RQ1: Are Faults Localizable?

In this paper, we evaluate how localized are the faults

in term of the number of faulty lines, methods, and files.

Figures 1, 2, and 3 show the proportion of faults that are

localizable up to a certain number of faulty lines, methods,

and files respectively. Each figure shows the results for

Rhino, AspectJ, Lucene, and the overall dataset. The detailed

results are given in Tables I, II, and III.

Considering the number of faulty lines, faults in Rhino,

AspectJ, and Lucene could span up to 957, 103, and 594

lines respectively. However, not many faults involve more

than 50 lines—only 22%, 3%, and 8% for Rhino, AspectJ,

and Lucene respectively. Figure 1 shows the proportion of

faults that span across 1 to 50 lines of code. 22% of Rhino’s

faults, 37% of AspectJ’s faults, and 19% of Lucene’s faults

involve one line. Overall, 33% of all faults involve one line.

Considering 10 lines of code, 59% of Rhino’s faults, 86%

of AspectJ’s faults, 83% of Lucene’s faults, and 83% of all

faults involve at most 10 lines. Therefore, most faults are

localized within 10 lines of code.

Considering the number of faulty methods, faults in

Rhino, AspectJ, and Lucene could span up to 296, 78,

and 217 methods respectively. However, not many faults

involve more than 20 methods—only 25%, 2%, 13% for

Rhino, AspectJ, and Lucene respectively. Figure 2 shows

the proportion of faults that span across 1 to 20 methods.

28% of Rhino’s faults, 49% of AspectJ’s faults, and 29%

of Lucene’s faults involve one method. Overall 44% of the

faults involve one method. Also, 83% of the faults involve

at most six methods.

Considering the number of faulty files, faults in Rhino,

AspectJ, and Lucene could span up to 14, 56, and 33 files

respectively. However, not many faults involve more than

10 files—only 3%, 1%, 6% for Rhino, AspectJ, and Lucene

respectively. Figure 3 shows the proportion of faults that

span across 1 to 10 files. 76% of Rhino’s faults, 77% of

AspectJ’s faults, and 65% of Lucene’s faults involve one

file. Overall, 73% of the faults involve one file. Also, 88%

of the faults involve at most two files.

Figure 4 shows the proportion of faults that have 1 to

1,000 gap locality scores. We notice that most faults have

rather big gap locality across the three programs.

B. RQ2: Are the Most Severe Faults Localizable?

We evaluate the relationship between localizable faults

and their severity levels. There are six severity levels in

the AspectJ bugs that we analyze: blocker, critical, major,

minor, normal, and trivial (from high to low). As for Rhino,

there are only two levels: major and normal. For Lucene,

there are four levels: blocker, major, minor, trivial. Table IV,

V, and VI show the severity levels when faults reside in

one line, less than ten lines, one method, and one file for
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Table I
NUMBER & PERCENTAGE OF FAULTS (IN PARENTHESES) COVERING

DIFFERENT NUMBER OF FAULTY LINES, METHODS, AND FILES FOR

RHINO

Locality Lines Methods Files

1 7 (22%) 9 (28%) 25 (76%)

2 3 (9%) 5 (16%) 3 (10%)
3 2 (6%) 4 (13%) 0 (0%)

4 0 (0%) 1 (3%) 2 (7%)
5 3 (9%) 1 (3%) 0 (0%)

6 0 (0%) 0 (0%) 0 (0%)
7 2 (6%) 0 (0%) 1 (3%)

8 1 (3%) 0 (0%) 0 (0%)

9 1 (3%) 1 (3%) 0 (0%)
10 0 (0%) 1 (3%) 0 (0%)

Table II
NUMBER AND PERCENTAGE OF FAULTS (IN PARENTHESES) COVERING

DIFFERENT NUMBER OF LINES, METHODS, AND JAVA FILES FOR

ASPECTJ

Locality Lines Methods Files

1 106 (37%) 139 (48%) 213 (77%)
2 49 (17%) 49 (17%) 45 (16%)

3 32 (11%) 26 (9%) 15 (5%)

4 13 (4%) 15 (5%) 8 (3%)
5 16 (6%) 8 (3%) 3 (1%)

6 8 (3%) 10 (3%) 4 (1%)
7 9 (3%) 11 (4%) 0 (0%)

8 4 (1%) 8 (2%) 0 (0%)

9 5 (2%) 3 (1%) 0 (0%)
10 6 (2%) 4 (1%) 0 (0%)

Table III
NUMBER AND PERCENTAGE OF FAULTS (IN PARENTHESES) COVERING

DIFFERENT NUMBER OF LINES, METHODS, AND JAVA FILES FOR LUCENE

Locality Lines Methods Files

1 10 (19%) 15(29%) 34(65%)
2 8 (15%) 6(12%) 10(19%)

3 6 (12%) 5 (10%) 1(2%)
4 4 (8%) 7(13%) 1(2%)

5 2 (4%) 4(8%) 1 (2%)
6 3 (6%) 4(8%) 0(0%)

7 6 (12%) 2(4%) 1(2%)

8 1 (2%) 1(2%) 1 (2%)
9 1 (2%) 0(0%) 0 (0%)

10 2 (4%) 0(0%) 0 (0%)

Table IV
NUMBERS AND PERCENTAGES OF FAULTS FOR DIFFERENT SEVERITY

LEVELS IN RHINO WHEN FAULTS ARE WITHIN 1 LINE, 10 LINES, 1
METHOD, OR 1 FILE

Bug severity 1 Line 10 Lines 1 Method 1 File

Major 0 (0%) 1 (50%) 1 (50%) 2 (100%)
Normal 7 (23%) 18 (60%) 8 (30%) 23 (85%)

Table V
NUMBERS & PERCENTAGES OF FAULTS FOR DIFFERENT SEVERITY

LEVELS IN ASPECTJ WHEN FAULTS ARE WITHIN 1 LINE, 10 LINES, 1
METHOD, OR 1 FILE

Bug severity 1 Line 10 Lines 1 Method 1 File

Blocker 3 (43%) 7 (100%) 4 (57%) 6 (86%)

Critical 8 (33%) 19 (79%) 11 (46%) 16 (67%)

Major 12 (40%) 26 (87%) 15 (50%) 22 (73%)
Minor 6 (43%) 11 (79%) 5 (36%) 11 (79%)

Normal 75 (35%) 183 (86%) 102 (48%) 156 (73%)
Trivial 2 (100%) 2 (100%) 2 (100%) 2 (100%)

Table VI
NUMBERS AND PERCENTAGES OF FAULTS FOR DIFFERENT SEVERITY

LEVELS IN LUCENE WHEN FAULTS ARE WITHIN 1 LINE, 10 LINES, 1
METHOD, OR 1 FILE

Bug severity 1 Line 10 Lines 1 Method 1 File

Blocker 1(33%) 2 (67%) 2(67%) 2(67%)

Major 5(20%) 18(72%) 7 (28%) 18(72%)
Minor 3(14%) 17(81%) 5(24%) 13(62%)

Trivial 1(50%) 2 (100%) 1(50%) 1(50%)
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Figure 1. Proportion of faults versus line locality.
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Figure 2. Proportion of faults versus method locality.
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Figure 3. Proportion of faults versus file locality.
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Figure 4. Proportion of faults versus gap locality.

Rhino, AspectJ, and Lucene respectively. For Rhino, 0%,

50%, 50%, and 100% of the major faults are localizable to

one line of code, ten lines of code, one method, and one

file, respectively. For AspectJ, 43%, 100%, 57%, and 86%,

of the blocker faults are localizable to one line of code, ten

lines of code, one method, and one file, respectively. For

Lucene, 33%, 67%, 67%, and 67% of the blocker faults

are localizable to one line of code, ten lines of code, one

method, and one file, respectively. Overall, considering the

most severe bugs in the category (i.e., blocker for Lucene

and AspectJ, and major for Rhino), 33%, 83%, 58%, and

83% of them are localizable to one line of code, ten lines of

code, one method, and one file, respectively, which means

many of the most severe faults are not localizable.
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C. Threats to Validity

Threat to external validity refers to the generalizability

of our findings. We only analyze three real Java programs

and may not be generalizable to other programs written in

different languages. Due to lack of data, we do not carry

out statistical significance test on the correlation between

bug severity and fault locality. We leave this as our future

work. Threat to internal validity is related to the manual

investigation on what the actual faulty lines are, and possible

implementation errors in the scripts to investigate the bugs.

V. RELATED WORK

1) Fault Localization. There are many studies on fault

localization [8], [12], [18], [19]. Renieris and Reiss contrast

a failed execution to its nearest correct execution to find most

suspicious program elements [18]. Zeller and Hildebrandt

propose Delta Debugging that automatically isolates failure-

inducing inputs [19]. Jones et al. propose Tarantula that ranks

program elements based on the proportion of failed and

correct executions that go through the elements [8]. Various

other suspiciousness measures have also been proposed [2],

[12], [13]. Artzi et al. propose Apollo to locate faults in

web applications [3]. Recent techniques also extract bug

signatures, but they often take exponential time and the

signatures only cover a few lines of code [4], [7].

Most of these studies assume faults to be localizable (i.e.,

they could be pinpointed to one or a few lines of code). In

this study, we empirically evaluate if this assumption holds.

There are also studies that investigate cases where

multiple faults exist at the same time (e.g., [9]). Herzig and

Zeller “untangle” changes in a commit that are unrelated

with each other [6]. In this study, we assume changes in

one commit deal with one bug only, and empirically analyze

how widespread or localized the faults are.

2) Empirical Studies on Bugs. Pan et al. analyze pat-

terns of bug fixes and classify bug fixes to different

categories [15]. Related studies on fault characterization

have also been performed by Ostrand and Weyuker [14],

Perry and Stieg [17], and Leszak et al. [11]. In this study,

we perform an orthogonal study investigating fault locality.

Parnin and Orso perform user studies and found that the

current fault localization techniques may not always be

sufficient [16]. Our work analyzes the bugs themselves

without user evaluation, but the results also bear a similar

implication.

VI. CONCLUSION & FUTURE WORK

In this work, we perform a preliminary study for the

question if bugs are localizable. We analyze hundreds of

bugs and their fixes from three software systems, AspectJ,

Rhino, and Lucene, and manually extract faults from

changes. We find that (1) 67% and 56% faults are not

localizable within one line and one method respectively,

and that (2) 67% and 42% of the most severe faults (i.e.,

“blocker” in AspectJ and Lucene, and “major” in Rhino) are

not localizable within one line and one method respectively.

Thus, fault localization techniques may need be improved

to report root causes that involve multiple lines or methods.

In the future, we plan to analyze more software

systems and plan to build a system that could automatically

recover faults from their treatments recorded in source

control repositories and bug tracking systems. We also plan

to investigate the faults that are not localizable and design

new approaches that can help debuggers to fix those faults.
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