4,661 research outputs found

    Physical Layer Protection Against Relay/Replay Attacks for Short-Range Systems

    Get PDF

    PADS: Practical Attestation for Highly Dynamic Swarm Topologies

    Full text link
    Remote attestation protocols are widely used to detect device configuration (e.g., software and/or data) compromise in Internet of Things (IoT) scenarios. Unfortunately, the performances of such protocols are unsatisfactory when dealing with thousands of smart devices. Recently, researchers are focusing on addressing this limitation. The approach is to run attestation in a collective way, with the goal of reducing computation and communication. Despite these advances, current solutions for attestation are still unsatisfactory because of their complex management and strict assumptions concerning the topology (e.g., being time invariant or maintaining a fixed topology). In this paper, we propose PADS, a secure, efficient, and practical protocol for attesting potentially large networks of smart devices with unstructured or dynamic topologies. PADS builds upon the recent concept of non-interactive attestation, by reducing the collective attestation problem into a minimum consensus one. We compare PADS with a state-of-the art collective attestation protocol and validate it by using realistic simulations that show practicality and efficiency. The results confirm the suitability of PADS for low-end devices, and highly unstructured networks.Comment: Submitted to ESORICS 201

    Quantifying pervasive authentication: the case of the Hancke-Kuhn protocol

    Full text link
    As mobile devices pervade physical space, the familiar authentication patterns are becoming insufficient: besides entity authentication, many applications require, e.g., location authentication. Many interesting protocols have been proposed and implemented to provide such strengthened forms of authentication, but there are very few proofs that such protocols satisfy the required security properties. The logical formalisms, devised for reasoning about security protocols on standard computer networks, turn out to be difficult to adapt for reasoning about hybrid protocols, used in pervasive and heterogenous networks. We refine the Dolev-Yao-style algebraic method for protocol analysis by a probabilistic model of guessing, needed to analyze protocols that mix weak cryptography with physical properties of nonstandard communication channels. Applying this model, we provide a precise security proof for a proximity authentication protocol, due to Hancke and Kuhn, that uses a subtle form of probabilistic reasoning to achieve its goals.Comment: 31 pages, 2 figures; short version of this paper appeared in the Proceedings of MFPS 201

    Distributed Coverage Verification in Sensor Networks Without Location Information

    Get PDF
    In this paper, we present three distributed algorithms for coverage verification in sensor networks with no location information. We demonstrate how, in the absence of localization devices, simplicial complexes and tools from algebraic topology can be used in providing valuable information about the properties of the cover. Our approach is based on computation of homologies of the Rips complex corresponding to the sensor network. First, we present a decentralized scheme based on Laplacian flows to compute a generator of the first homology, which represents coverage holes. Then, we formulate the problem of localizing coverage holes as an optimization problem for computing a sparse generator of the first homology. Furthermore, we show that one can detect redundancies in the sensor network by finding a sparse generator of the second homology of the cover relative to its boundary. We demonstrate how subgradient methods can be used in solving these optimization problems in a distributed manner. Finally, we provide simulations that illustrate the performance of our algorithms

    RUR53: an Unmanned Ground Vehicle for Navigation, Recognition and Manipulation

    Full text link
    This paper proposes RUR53: an Unmanned Ground Vehicle able to autonomously navigate through, identify, and reach areas of interest; and there recognize, localize, and manipulate work tools to perform complex manipulation tasks. The proposed contribution includes a modular software architecture where each module solves specific sub-tasks and that can be easily enlarged to satisfy new requirements. Included indoor and outdoor tests demonstrate the capability of the proposed system to autonomously detect a target object (a panel) and precisely dock in front of it while avoiding obstacles. They show it can autonomously recognize and manipulate target work tools (i.e., wrenches and valve stems) to accomplish complex tasks (i.e., use a wrench to rotate a valve stem). A specific case study is described where the proposed modular architecture lets easy switch to a semi-teleoperated mode. The paper exhaustively describes description of both the hardware and software setup of RUR53, its performance when tests at the 2017 Mohamed Bin Zayed International Robotics Challenge, and the lessons we learned when participating at this competition, where we ranked third in the Gran Challenge in collaboration with the Czech Technical University in Prague, the University of Pennsylvania, and the University of Lincoln (UK).Comment: This article has been accepted for publication in Advanced Robotics, published by Taylor & Franci

    Marquette Interchange Phase I Final Report

    Get PDF
    This report provides details on the design, installation and monitoring of a pavement instrumentation system for the analysis of load-induced stresses and strains within a perpetual HMA pavement system. The HMA pavement was constructed as part of an urban highway improvement project in the City of Milwaukee, Wisconsin. The outer wheel path of the outside lane was instrumented with asphalt strain sensors, base and subgrade pressure sensors, subgrade moisture and temperature sensors, HMA layer temperature sensors, traffic wander strips and a weigh in motion system. Environmental sensors for air temperature, wind speed and solar radiation are also included. The system captures the pavement response from each axle loading and transmits the data through a wireless link to a resident database at Marquette University. The collected data will be used to estimate the fatigue life of the perpetual HMA pavement and to modify, as necessary, pavement design procedures used within the State of Wisconsin

    Perpetual Pavement Instrumentation for the Marquette Interchange Project-Phase 1

    Get PDF
    This report provides details on the design, installation and monitoring of a pavement instrumentation system for the analysis of load-induced stresses and strains within a perpetual HMA pavement system. The HMA pavement was constructed as part of an urban highway improvement project in the City of Milwaukee, Wisconsin. The outer wheel path of the outside lane was instrumented with asphalt strain sensors, base and subgrade pressure sensors, subgrade moisture and temperature sensors, HMA layer temperature sensors, traffic wander strips and a weigh in motion system. Environmental sensors for air temperature, wind speed and solar radiation are also included. The system captures the pavement response from each axle loading and transmits the data through a wireless link to a resident database at Marquette University. The collected data will be used to estimate the fatigue life of the perpetual HMA pavement and to modify, as necessary, pavement design procedures used within the State of Wisconsin

    An Analysis of Information Assurance Relating to the Department of Defense Radio Frequency Identification (RFID) Passive Network

    Get PDF
    The mandates for suppliers to commence Radio Frequency Identification tagging set by Wal-Mart and the Department of Defense is changing this long-time rumored technology into reality. Despite the many conveniences to automate and improve asset tracking this technology offers, consumer groups have obstinately opposed this adoption due to the perceived weaknesses in security and privacy of the network. While the heated debate between consumers and retailers continues, little to no research has addressed the implications of security on the Department of Defense Radio Frequency Identification network. This thesis utilized a historical analysis of Radio Frequency Identification literature to determine whether the current network design causes any serious security concerns adversaries could exploit. The research concluded that at the present level of implementation, there is little cause for concern over the security of the network, but as the network grows to its full deployment, more evaluation and monitoring of security issues will require further consideration
    • …
    corecore