2 research outputs found

    A graph-based approach can improve keypoint detection of complex poses: a proof-of-concept on injury occurrences in alpine ski racing

    Get PDF
    For most applications, 2D keypoint detection works well and offers a simple and fast tool to analyse human movements. However, there remain many situations where even the best state-of-the-art algorithms reach their limits and fail to detect human keypoints correctly. Such situations may occur especially when individual body parts are occluded, twisted, or when the whole person is flipped. Especially when analysing injuries in alpine ski racing, such twisted and rotated body positions occur frequently. To improve the detection of keypoints for this application, we developed a novel method that refines keypoint estimates by rotating the input videos. We select the best rotation for every frame with a graph-based global solver. Thereby, we improve keypoint detection of an arbitrary pose estimation algorithm, in particular for 'hard' keypoints. In the current proof-of-concept study, we show that our approach outperforms standard keypoint detection results in all categories and in all metrics, in injury-related out-of-balance and fall situations by a large margin as well as previous methods, in performance and robustness. The Injury Ski II dataset was made publicly available, aiming to facilitate the investigation of sports accidents based on computer vision in the future

    Are Existing Monocular Computer Vision-Based 3D Motion Capture Approaches Ready for Deployment? A Methodological Study on the Example of Alpine Skiing

    No full text
    In this study, we compared a monocular computer vision (MCV)-based approach with the golden standard for collecting kinematic data on ski tracks (i.e., video-based stereophotogrammetry) and assessed its deployment readiness for answering applied research questions in the context of alpine skiing. The investigated MCV-based approach predicted the three-dimensional human pose and ski orientation based on the image data from a single camera. The data set used for training and testing the underlying deep nets originated from a field experiment with six competitive alpine skiers. The normalized mean per joint position error of the MVC-based approach was found to be 0.08 ± 0.01 m. Knee flexion showed an accuracy and precision (in parenthesis) of 0.4 ± 7.1° (7.2 ± 1.5°) for the outside leg, and −0.2 ± 5.0° (6.7 ± 1.1°) for the inside leg. For hip flexion, the corresponding values were −0.4 ± 6.1° (4.4° ± 1.5°) and −0.7 ± 4.7° (3.7 ± 1.0°), respectively. The accuracy and precision of skiing-related metrics were revealed to be 0.03 ± 0.01 m (0.01 ± 0.00 m) for relative center of mass position, −0.1 ± 3.8° (3.4 ± 0.9) for lean angle, 0.01 ± 0.03 m (0.02 ± 0.01 m) for center of mass to outside ankle distance, 0.01 ± 0.05 m (0.03 ± 0.01 m) for fore/aft position, and 0.00 ± 0.01 m2 (0.01 ± 0.00 m2) for drag area. Such magnitudes can be considered acceptable for detecting relevant differences in the context of alpine skiing.Science, Faculty ofNon UBCComputer Science, Department ofReviewedFacult
    corecore