6,137 research outputs found

    Performance Investigation of Digital Lowpass IIR Filter Based on Different Platforms

    Get PDF
    The work presented in this paper illuminates the design and simulation of a recursive or Infinite Impulse Response (IIR) filter. The proposed design algorithm employs the Genetic Algorithm to determine the filter coefficients to satisfy the required performance. The effectiveness of different platforms on filter design and performance has been studied in this paper. Three different platforms are considered to implement and verify the designed filter’s work through simulation. The first platform is the MATLAB/SIMULINK software package used to implement the Biquad form filter. This technique is the basis for the software implementation of the designed IIR filter. The HDL – Cosimulation technique is considered the second one; it inspired to take advantage of the existing tools in SIMULINK to convert the designed filter algorithm to the Very high-speed integrated circuit Hardware Description Language (VHDL) format. The System Generator is employed as the third technique, in which the designed filter is implemented as a hardware structure based on basic unit blocks provided by Xilinx System Generator. This technique facilitates the implementation of the designed filter in the FPGA target device. Simulation results show that the performance of the designed filter is remarkably reliable even with severe noise levels

    Accelerating Deterministic and Stochastic Binarized Neural Networks on FPGAs Using OpenCL

    Full text link
    Recent technological advances have proliferated the available computing power, memory, and speed of modern Central Processing Units (CPUs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). Consequently, the performance and complexity of Artificial Neural Networks (ANNs) is burgeoning. While GPU accelerated Deep Neural Networks (DNNs) currently offer state-of-the-art performance, they consume large amounts of power. Training such networks on CPUs is inefficient, as data throughput and parallel computation is limited. FPGAs are considered a suitable candidate for performance critical, low power systems, e.g. the Internet of Things (IOT) edge devices. Using the Xilinx SDAccel or Intel FPGA SDK for OpenCL development environment, networks described using the high-level OpenCL framework can be accelerated on heterogeneous platforms. Moreover, the resource utilization and power consumption of DNNs can be further enhanced by utilizing regularization techniques that binarize network weights. In this paper, we introduce, to the best of our knowledge, the first FPGA-accelerated stochastically binarized DNN implementations, and compare them to implementations accelerated using both GPUs and FPGAs. Our developed networks are trained and benchmarked using the popular MNIST and CIFAR-10 datasets, and achieve near state-of-the-art performance, while offering a >16-fold improvement in power consumption, compared to conventional GPU-accelerated networks. Both our FPGA-accelerated determinsitic and stochastic BNNs reduce inference times on MNIST and CIFAR-10 by >9.89x and >9.91x, respectively.Comment: 4 pages, 3 figures, 1 tabl

    Text Coherence Analysis Based on Deep Neural Network

    Full text link
    In this paper, we propose a novel deep coherence model (DCM) using a convolutional neural network architecture to capture the text coherence. The text coherence problem is investigated with a new perspective of learning sentence distributional representation and text coherence modeling simultaneously. In particular, the model captures the interactions between sentences by computing the similarities of their distributional representations. Further, it can be easily trained in an end-to-end fashion. The proposed model is evaluated on a standard Sentence Ordering task. The experimental results demonstrate its effectiveness and promise in coherence assessment showing a significant improvement over the state-of-the-art by a wide margin.Comment: 4 pages, 2 figures, CIKM 201

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing

    Full text link
    The hardware implementation of deep neural networks (DNNs) has recently received tremendous attention: many applications in fact require high-speed operations that suit a hardware implementation. However, numerous elements and complex interconnections are usually required, leading to a large area occupation and copious power consumption. Stochastic computing has shown promising results for low-power area-efficient hardware implementations, even though existing stochastic algorithms require long streams that cause long latencies. In this paper, we propose an integer form of stochastic computation and introduce some elementary circuits. We then propose an efficient implementation of a DNN based on integral stochastic computing. The proposed architecture has been implemented on a Virtex7 FPGA, resulting in 45% and 62% average reductions in area and latency compared to the best reported architecture in literature. We also synthesize the circuits in a 65 nm CMOS technology and we show that the proposed integral stochastic architecture results in up to 21% reduction in energy consumption compared to the binary radix implementation at the same misclassification rate. Due to fault-tolerant nature of stochastic architectures, we also consider a quasi-synchronous implementation which yields 33% reduction in energy consumption w.r.t. the binary radix implementation without any compromise on performance.Comment: 11 pages, 12 figure

    Deep Bilateral Learning for Real-Time Image Enhancement

    Get PDF
    Performance is a critical challenge in mobile image processing. Given a reference imaging pipeline, or even human-adjusted pairs of images, we seek to reproduce the enhancements and enable real-time evaluation. For this, we introduce a new neural network architecture inspired by bilateral grid processing and local affine color transforms. Using pairs of input/output images, we train a convolutional neural network to predict the coefficients of a locally-affine model in bilateral space. Our architecture learns to make local, global, and content-dependent decisions to approximate the desired image transformation. At runtime, the neural network consumes a low-resolution version of the input image, produces a set of affine transformations in bilateral space, upsamples those transformations in an edge-preserving fashion using a new slicing node, and then applies those upsampled transformations to the full-resolution image. Our algorithm processes high-resolution images on a smartphone in milliseconds, provides a real-time viewfinder at 1080p resolution, and matches the quality of state-of-the-art approximation techniques on a large class of image operators. Unlike previous work, our model is trained off-line from data and therefore does not require access to the original operator at runtime. This allows our model to learn complex, scene-dependent transformations for which no reference implementation is available, such as the photographic edits of a human retoucher.Comment: 12 pages, 14 figures, Siggraph 201
    corecore