8 research outputs found

    Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems.

    Get PDF
    Unlike practices in electrical and mechanical equipment engineering, Cyber-Physical Systems (CPS) do not have a set of standardized and harmonized practices for assurance and certification that ensures safe, secure and reliable operation with typical software and hardware architectures. This paper presents a recent initiative called AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems) to promote harmonization, reuse and automation of labour-intensive certification-oriented activities via using model-based approaches and incremental techniques. AMASS will develop an integrated and holistic approach, a supporting tool ecosystem and a self-sustainable community for assurance and certification of CPS. The approach will be driven by architectural decisions (fully compatible with standards, e.g. AUTOSAR and IMA), including multiple assurance concerns such as safety, security and reliability. AMASS will support seamless interoperability between assurance/certification and engineering activities along with third-party activities (external assessments, supplier assurance). The ultimate aim is to lower certification costs in face of rapidly changing product features and market needs.This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692474. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Czech Republic, Germany, Sweden, Austria, Italy, United Kingdom, Franc

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    AMASS: A Large-Scale European Project to Improve the Assurance and Certification of Cyber-Physical Systems

    Get PDF
    Most safety-critical systems must undergo assurance and certification processes. The associated activities can be complex and labour-intensive, thus practitioners need suitable means to execute them. The activities are further becoming more challenging as a result of the evolution of the systems towards cyber-physical ones, as these systems have new assurance and certification needs. The AMASS project (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems) tackled these issues by creating and consolidating the de-facto European-wide open tool platform, ecosystem, and self-sustainable community for assurance and certification of cyber-physical systems. The project defined a novel holistic approach for architecture-driven assurance, multi-concern assurance, seamless interoperability, and cross- and intra-domain reuse of assurance assets. AMASS results were applied in 11 industrial case studies to demonstrate the reduction of effort in assurance and certification, the reduction of (re)certification cost, the reduction of assurance and certification risks, and the increase in technology harmonisation and interoperability.The research leading to this paper has received funding from the AMASS project (H2020-ECSEL grant agreement no 692474; Spain’s MINECO ref. PCIN-2015-262; Sweden’s Vinnova) and the Ramon y Cajal Program (Spain’s MICINN ref. RYC-2017-22836; EC’s European Social Fund). We are also grateful to all the AMASS partners. Their work and results are summarised in this paper

    Automatic classification of web images as UML static diagrams using machine learning techniques

    Get PDF
    Our purpose in this research is to develop a method to automatically and efficiently classify web images as Unified Modeling Language (UML) static diagrams, and to produce a computer tool that implements this function. The tool receives a bitmap file (in different formats) as an input and communicates whether the image corresponds to a diagram. For pragmatic reasons, we restricted ourselves to the simplest kinds of diagrams that are more useful for automated software reuse: computer-edited 2D representations of static diagrams. The tool does not require that the images are explicitly or implicitly tagged as UML diagrams. The tool extracts graphical characteristics from each image (such as grayscale histogram, color histogram and elementary geometric forms) and uses a combination of rules to classify it. The rules are obtained with machine learning techniques (rule induction) from a sample of 19,000 web images manually classified by experts. In this work, we do not consider the textual contents of the images. Our tool reaches nearly 95% of agreement with manually classified instances, improving the effectiveness of related research works. Moreover, using a training dataset 15 times bigger, the time required to process each image and extract its graphical features (0.680 s) is seven times lower.This research has received funding from the CRYSTAL project – Critical System Engineering Acceleration (European Union’s Seventh Framework Program, FP7/2007-2013, ARTEMIS Joint Undertaking grant agreement n° 332830); and from the AMASS project – Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems (H2020-ECSEL grant agreement nº 692474; Spain’s MINECO ref. PCIN-2015-262)

    Application of machine learning techniques to the flexible assessment and improvement of requirements quality

    Get PDF
    It is already common to compute quantitative metrics of requirements to assess their quality. However, the risk is to build assessment methods and tools that are both arbitrary and rigid in the parameterization and combination of metrics. Specifically, we show that a linear combination of metrics is insufficient to adequately compute a global measure of quality. In this work, we propose to develop a flexible method to assess and improve the quality of requirements that can be adapted to different contexts, projects, organizations, and quality standards, with a high degree of automation. The domain experts contribute with an initial set of requirements that they have classified according to their quality, and we extract their quality metrics. We then use machine learning techniques to emulate the implicit expert’s quality function. We provide also a procedure to suggest improvements in bad requirements. We compare the obtained rule-based classifiers with different machine learning algorithms, obtaining measurements of effectiveness around 85%. We show as well the appearance of the generated rules and how to interpret them. The method is tailorable to different contexts, different styles to write requirements, and different demands in quality. The whole process of inferring and applying the quality rules adapted to each organization is highly automatedThis research has received funding from the CRYSTAL project–Critical System Engineering Acceleration (European Union’s Seventh Framework Program FP7/2007-2013, ARTEMIS Joint Undertaking grant agreement no 332830); and from the AMASS project–Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems (H2020-ECSEL grant agreement no 692474; Spain’s MINECO ref. PCIN-2015-262)

    The AMASS approach for assurance and certification of critical systems

    Get PDF
    Safety-critical systems are subject to rigorous assurance and certification processes to guarantee that they do not pose unreasonable risks to people, property, or the environment. The associated activities are usually complex and time-consuming, thus they need adequate support for their execution. The activities are further becoming more challenging as the systems are evolving towards open, interconnected systems with new features, e.g. Internet connectivity, and new assurance needs, e.g. compliance with several assurance standards for different dependability attributes. This requires the development of novel approaches for cost-effective assurance and certification. With the overall goal of lowering assurance and certification costs in face of rapidly changing features and market needs, the AMASS project has created and consolidated the de-facto European-wide open solution for assurance and certification of critical systems. This has been achieved by establishing a novel holistic and reuse-oriented approach for architecture-driven assurance, multi-concern assurance, and for seamless interoperability between assurance and engineering activities along with third-party activities. This paper introduces the main elements of the AMASS approach and how to use them and benefit from them.The work leading to this paper has received funding from the AMASS project (H2020-ECSEL grant agreement no 692474; Spain’s MINECO ref. PCIN-2015-262)

    Una aproximación para representar estándares de seguridad con una herramienta de ingeniería de requisitos basada en ontologías

    Get PDF
    Los sistemas críticos de seguridad son aquellos sistemas cuyo fallo puede ocasionar pérdidas de vidas, daños materiales significativos o daños al medio ambiente. Los sistemas críticos deben cumplir con normas de seguridad y estándares de seguridad como una forma de garantizar que no pueden provocar riesgos indebidos para las personas, la propiedad o el medio ambiente. Un estándar de seguridad ('safety standard') es un documento que recoge un conjunto de buenas prácticas, acordadas por un consorcio de empresas y profesionales, para el desarrollo y aseguramiento de sistemas críticos de seguridad. El cumplimiento de las normas de seguridad es una actividad muy exigente, ya que los estándares pueden constar de cientos de páginas y los profesionales generalmente tienen que demostrar el cumplimiento de miles de criterios relacionados con la seguridad. Estos documentos suelen ser largos, ambiguos, y difíciles de entender, por lo que varios expertos recomiendan su representación explícita y estructurada para facilitar la comprensión y aplicación de estos estándares. Dado que la realización de estas representaciones puede ser compleja, es aconsejable utilizar herramientas que la apoyen. El objetivo de este TFG es definir una aproximación para representar estándares de seguridad en KM, una herramienta de ingeniería de requisitos basada en ontologías que se utiliza actualmente en industria para representar, por ejemplo, los requisitos y la estructura de sistemas. La aproximación utilizará además como base las propuestas existentes más recientes para el modelado de estándares de seguridad.Doble Grado en Ingeniería Informática y Administración de Empresa

    Updated SPARTA SRIA (Roadmap v3): Roadmap for the SPARTA Cybersecurity Competence Network

    Get PDF
    This deliverable constitutes the SPARTA roadmap. It describes the SPARTA roadmap's mission statement of strengthening EU's digital autonomy via cybersecurity. To this end, a first step towards a prioritization of the existing program, transversal, and emerging cybersecurity challenges is provided with respect to their impact on digital sovereignty. The document outlines an open-source strategy, covering software as well as hardware, endorsed by SPARTA towards its mission. We also describe implications of the COVID-19 pandemic on cybersecurity and suggests recommendations to address them.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 83089
    corecore