144,818 research outputs found

    A decentralized consensus application using blockchain ecosystem

    Get PDF
    The consensus is a critical operation of any decision-making process. It involves a set of eligible members; whose decision need to be honored by taking their acknowledgment before making any decision. The traditional consensus process follows centralized architecture, the members need to rely on and trust this architecture. The proposed system aims to develop a secure decentralized consensus application in the untrusted environment by making use of blockchain technology along with smart contract and interplanetary file system (IPFS)

    A data Grid prototype for distributed data production in CMS

    Get PDF
    The CMS experiment at CERN is setting up a Grid infrastructure required to fulfill the needs imposed by Terabyte scale productions for the next few years. The goal is to automate the production and at the same time allow the users to interact with the system, if required, to make decisions which would optimize performance. We present the architecture, design and functionality of our first working Objectivity file replication prototype. The middle-ware of choice is the Globus toolkit that provides promising functionality. Our results prove the ability of the Globus toolkit to be used as an underlying technology for a world-wide Data Grid. The required data management functionality includes high speed file transfers, secure access to remote files, selection and synchronization of replicas and managing the meta information. The whole system is expected to be flexible enough to incorporate site specific policies. The data management granularity is the file rather than the object level. The first prototype is currently in use for the High Level Trigger (HLT) production (autumn 2000). Owing to these efforts, CMS is one of the pioneers to use the Data Grid functionality in a running production system. The project can be viewed as an evaluator of different strategies, a test for the capabilities of middle-ware tools and a provider of basic Grid functionalities

    A SECURE INFORMATION INFRASTRUCTURE FOR SERVICE ORIENTED ARCHITECTURES

    Get PDF
    In today's ever-evolving design environments, a focus switch is needed from workstation-centric software tools to distributed services. For Computer-Aided Design, the use of distributed services has the potential to incorporate all of the needed software features for a given project into a new design system that utilizes services. Thus, the designer would have access to features that are not locally installed. This thesis presents a secure middleware solution for design environments. The secure middleware solution provides a system architecture and information infrastructure to facilitate the needs of the designer while also providing access to remote services. The system architecture and information infrastructure are designed with the designer in mind by providing access to any file at any time at any location, and the ability to submit jobs to any available services. These fundamental components are implemented as to not compromise security or accountability. Enabling the system architecture are four fundamental technologies created for this system. They include: (1) a Secure Java Messaging Service, (2) Verification Services, (3) Gateway and Directory Services, and (4) a Secure File System. Through the creation of these four technologies, the system architecture and information infrastructure was developed and deployed into a simulated design environment. Results showing the benefits of this design environment over other design environments are explored within this thesis. Overall, the secure middleware solution for design environments benefits designers and enterprises in a secure, traceable, and accountable manner

    Blockchain inspired secure and reliable data exchange architecture for cyber-physical healthcare system 4.0

    Get PDF
    A cyber-physical system is considered to be a collection of strongly coupled communication systems and devices that poses numerous security trials in various industrial applications including healthcare. The security and privacy of patient data is still a big concern because healthcare data is sensitive and valuable, and it is most targeted over the internet. Moreover, from the industrial perspective, the cyber-physical system plays a crucial role in the exchange of data remotely using sensor nodes in distributed environments. In the healthcare industry, Blockchain technology offers a promising solution to resolve most securities-related issues due to its decentralized, immutability, and transparency properties. In this paper, a blockchain-inspired secure and reliable data exchange architecture is proposed in the cyber-physical healthcare industry 4.0. The proposed system uses the BigchainDB, Tendermint, Inter-Planetary-File-System (IPFS), MongoDB, and AES encryption algorithms to improve Healthcare 4.0. Furthermore, blockchain-enabled secure healthcare architecture for accessing and managing the records between Doctors and Patients is introduced. The development of a blockchain-based Electronic Healthcare Record (EHR) exchange system is purely patient-centric, which means the entire control of data is in the owner's hand which is backed by blockchain for security and privacy. Our experimental results reveal that the proposed architecture is robust to handle more security attacks and can recover the data if 2/3 of nodes are failed. The proposed model is patient-centric, and control of data is in the patient's hand to enhance security and privacy, even system administrators can't access data without user permission

    Implementation of Secure DNP3 Architecture of SCADA System for Smart Grids

    Get PDF
    With the recent advances in the power grid system connecting to the internet, data sharing, and networking enables space for hackers to maliciously attack them based on their vulnerabilities. Vital stations in the smart grid are the generation, transmission, distribution, and customer substations are connected and controlled remotely by the network. Every substation is controlled by a Supervisory Control and Data Acquisition (SCADA) system which communicates on DNP3 protocol on Internet/IP which has many security vulnerabilities. This research will focus on Distributed Network Protocol (DNP3) communication which is used in the smart grid to communicate between the controller devices. We present the DNP3 SAv5 and design a secure architecture with Public Key Infrastructure (PKI) on Asymmetric key encryption using a Certificate Authority (CA). The testbed provides a design architecture between customer and distribution substation and illustrates the verification of the public certificate. We have added a layer of security by giving a password to a private key file to avoid physical tampering of the devices at the customer substations. The simulation results show that the secure communication on the TLS layer provides confidentiality, integrity, and availability
    corecore