357 research outputs found

    Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    Get PDF

    On IP over WDM burst-switched long haul and metropolitan area networks

    Get PDF
    The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution ushered in by the phenomenal advances in networking technologies and technical breakthroughs in optical communications, fueled by the increasing demand in the reduction of operation costs and the network management complexity. The unprecedented bandwidth provisioning capability and the multi-service supportability of the WDM technology, in synergy with the data-oriented internetworking mechanisms, facilitates a common shared infrastructure for the Next Generation Internet (NGJ). While NGI targets to perform packet processing directly on the optical transport layer, a smooth evolution is critical to success. Intense research has been conducted to design the new generation optical networks that retain the advantages of packet-oriented transport prototypes while rendering elastic network resource utilization and graded levels of service. This dissertation is focused on the control architecture, enabling technologies, and performance analysis of the WDM burst-switched long haul and Metropolitan Area Networks (MANs). Theoretical analysis and simulation results are reported to demonstrate the system performance and efficiency of proposed algorithms. A novel transmission mechanism, namely, the Forward Resource Reservation (ERR) mechanism, is proposed to reduce the end-to-end delay for an Optical Burst Switching (OBS)-based IP over WDM system. The ERR scheme adopts a Linear Predictive Filter and an aggressive reservation strategy for data burst length prediction and resource reservation, respectively, and is extended to facilitate Quality of Service (QoS) differentiation at network edges. The ERR scheme improves the real-time communication services for applications with time constraints without deleterious system costs. The aggressive strategy for channel holding time reservations is proposed. Specifically, two algorithms, the success probability-driven (SPD) and the bandwidth usage-driven (BUD) ones, are proposed for resource reservations in the FRRenabled scheme. These algorithms render explicit control on the latency reduction improvement and bandwidth usage efficiency, respectively, both of which are important figures of performance metrics. The optimization issue for the FRR-enabled system is studied based on two disciplines - addressing the static and dynamic models targeting different desired objectives (in terms of algorithm efficiency and system performance), and developing a \u27\u27crank back\u27\u27 based signaling mechanism to provide bandwidth usage efficiency. The proposed mechanisms enable the network nodes to make intelligent usage of the bandwidth resources. In addition, a new control architecture with enhanced address resolution protocol (E-ARP), burst-based transmission, and hop-based wavelength allocation is proposed for Ethernet-supported IP over WDM MANs. It is verified, via theoretical analysis and simulation results, that the E-ARP significantly reduces the call setup latency and the transmission requirements associated with the address probing procedures; the burst-based transport mechanism improves the network throughput and resource utilization; and the hop-based wavelength allocation algorithm provides bandwidth multiplexing with fairness and high scalability. The enhancement of the Ethernet services, in tandem with the innovative mechanisms in the WDM domain, facilitates a flexible and efficient integration, thus making the new generation optical MAN optimized for the scalable, survivable, and IP-dominated network at gigabit speed possible

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore