26,063 research outputs found

    ARCHITECTURE, MODELS, AND ALGORITHMS FOR TEXTUAL SIMILARITY

    Get PDF
    Identifying similar pieces of texts remains one of the fundamental problems in computational linguistics. This dissertation focuses on the textual similarity measurement and identification problem by studying a variety of major tasks that share common properties, and presents our efforts to address 7 closely-related similarity tasks given over 20 public benchmarks, including paraphrase identification, answer selection for question answering, pairwise learning to rank, monolingual/cross-lingual semantic textual similarity measurement, insight extraction on biomedical literature, and high performance cross-lingual pattern matching for machine translation on GPUs. We investigate how to make textual similarity measurement more accurate with deep neural networks. Traditional approaches are either based on feature engineering which leads to disconnected solutions, or the Siamese architecture which treats inputs independently, utilizes single representation view and straightforward similarity comparison. In contrast, we focus on modeling stronger interactions between inputs and develop interaction-based neural modeling that explicitly encodes the alignments of input words or aggregated sentence representations into our models. As a result, our multiple deep neural networks show highly competitive performance on many textual similarity measurement public benchmarks we evaluated. Our multi-perspective convolutional neural networks (MPCNN) uses a multiplicity of perspectives to process input sentences with multiple parallel convolutional neural networks, is able to extract salient sentence-level features automatically at multiple granularities with different types of pooling. Our novel structured similarity layer encourages stronger input interactions by comparing local regions of both sentence representations. This model is the first example of our interaction-based neural modeling. We also provide an attention-based input interaction layer on top of the MPCNN model. The input interaction layer models a closer relationship of input words by converting two separate sentences into an inter-related sentence pair. This layer utilizes the attention mechanism in a straightforward way, and is another example of our interaction-based neural modeling. We then provide our pairwise word interaction model with very deep neural networks (PWI). This model directly encodes input word interactions with novel pairwise word interaction modeling and a novel similarity focus layer. The use of very deep architecture in this model is the first example in NLP domain for better textual similarity modeling. Our PWI model outperforms the Siamese architecture and feature engineering approach on multiple tasks, and is another example of our interaction-based neural modeling. We also focus on the question answering task with a pairwise ranking approach. Unlike traditional pointwise approach of the task, our pairwise ranking approach with the use of negative sampling focuses on modeling interactions between two pairs of question and answer inputs, then learns a relative order of the pairs to predict which answer is more relevant to the question. We demonstrate its high effectiveness against competitive previous pointwise baselines. For the insight extraction on biomedical literature task, we develop neural networks with similarity modeling for better causality/correlation relation extraction, as we convert the extraction task into a similarity measurement task. Our approach innovates in that it explicitly models the interactions among the trio: named entities, entity relations and contexts, and then measures both relational and contextual similarity among them, finally integrate both similarity evaluations into considerations for insight extraction. We also build an end-to-end system to extract insights, with human evaluations we show our system is able to extract insights with high human acceptance accuracy. Lastly, we explore how to exploit massive parallelism offered by modern GPUs for high-efficiency pattern matching. We take advantage of GPU hardware advances and develop a massive parallelism approach. We firstly work on phrase-based SMT, where we enable phrase lookup and extraction on suffix arrays to be massively parallelized and vastly many queries to be carried out in parallel. We then work on computationally expensive hierarchical SMT model, which requires matching grammar patterns that contain ''gaps''. In order to get high efficiency for the similarity identification task on GPUs, we show developing massively parallel algorithms on GPUs is the most important approach to fully utilize GPU's raw processing power, and developing compact data structures on GPUs is helpful to lower GPU's memory latency. Compared to a highly-optimized, state-of-the-art multi-threaded CPU implementation, our techniques achieve orders of magnitude improvement in terms of throughput

    A Deep Network Model for Paraphrase Detection in Short Text Messages

    Full text link
    This paper is concerned with paraphrase detection. The ability to detect similar sentences written in natural language is crucial for several applications, such as text mining, text summarization, plagiarism detection, authorship authentication and question answering. Given two sentences, the objective is to detect whether they are semantically identical. An important insight from this work is that existing paraphrase systems perform well when applied on clean texts, but they do not necessarily deliver good performance against noisy texts. Challenges with paraphrase detection on user generated short texts, such as Twitter, include language irregularity and noise. To cope with these challenges, we propose a novel deep neural network-based approach that relies on coarse-grained sentence modeling using a convolutional neural network and a long short-term memory model, combined with a specific fine-grained word-level similarity matching model. Our experimental results show that the proposed approach outperforms existing state-of-the-art approaches on user-generated noisy social media data, such as Twitter texts, and achieves highly competitive performance on a cleaner corpus

    News Session-Based Recommendations using Deep Neural Networks

    Full text link
    News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.Comment: Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. https://recsys.acm.org/recsys18/dlrs

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    COTA: Improving the Speed and Accuracy of Customer Support through Ranking and Deep Networks

    Full text link
    For a company looking to provide delightful user experiences, it is of paramount importance to take care of any customer issues. This paper proposes COTA, a system to improve speed and reliability of customer support for end users through automated ticket classification and answers selection for support representatives. Two machine learning and natural language processing techniques are demonstrated: one relying on feature engineering (COTA v1) and the other exploiting raw signals through deep learning architectures (COTA v2). COTA v1 employs a new approach that converts the multi-classification task into a ranking problem, demonstrating significantly better performance in the case of thousands of classes. For COTA v2, we propose an Encoder-Combiner-Decoder, a novel deep learning architecture that allows for heterogeneous input and output feature types and injection of prior knowledge through network architecture choices. This paper compares these models and their variants on the task of ticket classification and answer selection, showing model COTA v2 outperforms COTA v1, and analyzes their inner workings and shortcomings. Finally, an A/B test is conducted in a production setting validating the real-world impact of COTA in reducing issue resolution time by 10 percent without reducing customer satisfaction

    Matching Natural Language Sentences with Hierarchical Sentence Factorization

    Full text link
    Semantic matching of natural language sentences or identifying the relationship between two sentences is a core research problem underlying many natural language tasks. Depending on whether training data is available, prior research has proposed both unsupervised distance-based schemes and supervised deep learning schemes for sentence matching. However, previous approaches either omit or fail to fully utilize the ordered, hierarchical, and flexible structures of language objects, as well as the interactions between them. In this paper, we propose Hierarchical Sentence Factorization---a technique to factorize a sentence into a hierarchical representation, with the components at each different scale reordered into a "predicate-argument" form. The proposed sentence factorization technique leads to the invention of: 1) a new unsupervised distance metric which calculates the semantic distance between a pair of text snippets by solving a penalized optimal transport problem while preserving the logical relationship of words in the reordered sentences, and 2) new multi-scale deep learning models for supervised semantic training, based on factorized sentence hierarchies. We apply our techniques to text-pair similarity estimation and text-pair relationship classification tasks, based on multiple datasets such as STSbenchmark, the Microsoft Research paraphrase identification (MSRP) dataset, the SICK dataset, etc. Extensive experiments show that the proposed hierarchical sentence factorization can be used to significantly improve the performance of existing unsupervised distance-based metrics as well as multiple supervised deep learning models based on the convolutional neural network (CNN) and long short-term memory (LSTM).Comment: Accepted by WWW 2018, 10 page
    • …
    corecore