1,195 research outputs found

    Designing Flexible, Energy Efficient and Secure Wireless Solutions for the Internet of Things

    Full text link
    The Internet of Things (IoT) is an emerging concept where ubiquitous physical objects (things) consisting of sensor, transceiver, processing hardware and software are interconnected via the Internet. The information collected by individual IoT nodes is shared among other often heterogeneous devices and over the Internet. This dissertation presents flexible, energy efficient and secure wireless solutions in the IoT application domain. System design and architecture designs are discussed envisioning a near-future world where wireless communication among heterogeneous IoT devices are seamlessly enabled. Firstly, an energy-autonomous wireless communication system for ultra-small, ultra-low power IoT platforms is presented. To achieve orders of magnitude energy efficiency improvement, a comprehensive system-level framework that jointly optimizes various system parameters is developed. A new synchronization protocol and modulation schemes are specified for energy-scarce ultra-small IoT nodes. The dynamic link adaptation is proposed to guarantee the ultra-small node to always operate in the most energy efficiency mode, given an operating scenario. The outcome is a truly energy-optimized wireless communication system to enable various new applications such as implanted smart-dust devices. Secondly, a configurable Software Defined Radio (SDR) baseband processor is designed and shown to be an efficient platform on which to execute several IoT wireless standards. It is a custom SIMD execution model coupled with a scalar unit and several architectural optimizations: streaming registers, variable bitwidth, dedicated ALUs, and an optimized reduction network. Voltage scaling and clock gating are employed to further reduce the power, with a more than a 100% time margin reserved for reliable operation in the near-threshold region. Two upper bound systems are evaluated. A comprehensive power/area estimation indicates that the overhead of realizing SDR flexibility is insignificant. The benefit of baseband SDR is quantified and evaluated. To further augment the benefits of a flexible baseband solution and to address the security issue of IoT connectivity, a light-weight Galois Field (GF) processor is proposed. This processor enables both energy-efficient block coding and symmetric/asymmetric cryptography kernel processing for a wide range of GF sizes (2^m, m = 2, 3, ..., 233) and arbitrary irreducible polynomials. Program directed connections among primitive GF arithmetic units enable dynamically configured parallelism to efficiently perform either four-way SIMD GF operations, including multiplicative inverse, or a long bit-width GF product in a single cycle. This demonstrates the feasibility of a unified architecture to enable error correction coding flexibility and secure wireless communication in the low power IoT domain.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137164/1/yajchen_1.pd

    Design and realization of an embedded processor for cryptographic applications

    Get PDF
    Architectural enhancements are a set of modifications in a general-purpose processor to improve the processing of a given workload such as multimedia applications and cryptographic operations. Employing faster/enhanced arithmetic units for the existing instruction set architecture (ISA), introducing application-specific instructions to the ISA, and adding a new set of registers are common practices employed as architectural enhancements. In this thesis, we introduce and implement a set of relatively low-cost enhancement techniques to accelerate certain arithmetic operations common in cryptographic applications on a configurable and extensible embedded processor core. The proposed enhancements are generic in the sense that they can profitably be applied in many RISC processors. These enhancements are organized into, what we prefer to call as, cryptographic unit (CU) that offers an extended ISA to the programmer. We then present the speedup values obtained for various arithmetic operations and public key cryptography algorithms through these enhancements. Furthermore, hardware overhead of introducing the enhancements to the embedded extensible processor is provided in terms of chip area. Our experimental results show that the proposed architectural enhancements provides significant amount of speedup (up to one order of magnitude) in elliptic curve cryptography and RSA with a conservative increase in hardware. Last but not the least, we demonstrate that the proposed enhancements facilitate protection of cryptographic algorithms against certain side-channel attacks by reporting our case study of AES implementation hardened against cache-based attacks

    A Novel Architectural Framework on IoT Ecosystem, Security Aspects and Mechanisms: A Comprehensive Survey

    Get PDF
    For the past few years, the Internet of Things (IoT) technology continues to not only gain popularity and importance, but also witnesses the true realization of everything being smart. With the advent of the concept of smart everything, IoT has emerged as an area of great potential and incredible growth. An IoT ecosystem centers around innovation perspective which is considered as its fundamental core. Accordingly, IoT enabling technologies such as hardware and software platforms as well as standards become the core of the IoT ecosystem. However, any large-scale technological integration such as the IoT development poses the challenge to ensure secure data transmission. Perhaps, the ubiquitous and the resource-constrained nature of IoT devices and the sensitive and private data being generated by IoT systems make them highly vulnerable to physical and cyber threats. In this paper, we re-define an IoT ecosystem from the core technologies view point. We propose a modified three layer IoT architecture by dividing the perception layer into elementary blocks based on their attributed functions. Enabling technologies, attacks and security countermeasures are classified under each layer of the proposed architecture. Additionally, to give the readers a broader perspective of the research area, we discuss the role of various state-of-the-art emerging technologies in the IoT security. We present the security aspects of the most prominent standards and other recently developed technologies for IoT which might have the potential to form the yet undefined IoT architecture. Among the technologies presented in this article, we give a special interest to one recent technology in IoT domain. This technology is named IQRF that stands for Intelligent Connectivity using Radio Frequency. It is an emerging technology for wireless packet-oriented communication that operates in sub-GHz ISM band (868 MHz) and which is intended for general use where wireless connectivity is needed, either in a mesh network or point-to-point (P2P) configuration. We also highlighted the security aspects implemented in this technology and we compare it with the other already known technologies. Moreover, a detailed discussion on the possible attacks is presented. These attacks are projected on the IoT technologies presented in this article including IQRF. In addition, lightweight security solutions, implemented in these technologies, to counter these threats in the proposed IoT ecosystem architecture are also presented. Lastly, we summarize the survey by listing out some common challenges and the future research directions in this field.publishedVersio

    Proceedings of the Workshop on web applications and secure hardware (WASH 2013).

    Get PDF
    Web browsers are becoming the platform of choice for applications that need to work across a wide range of different devices, including mobile phones, tablets, PCs, TVs and in-car systems. However, for web applications which require a higher level of assurance, such as online banking, mobile payment, and media distribution (DRM), there are significant security and privacy challenges. A potential solution to some of these problems can be found in the use of secure hardware – such as TPMs, ARM TrustZone, virtualisation and secure elements – but these are rarely accessible to web applications or used by web browsers. The First Workshop on Web Applications and Secure Hardware (WASH'13) focused on how secure hardware could be used to enhance web applications and web browsers to provide functionality such as credential storage, attestation and secure execution. This included challenges in compatibility (supporting the same security features despite different user hardware) as well as multi-device scenarios where a device with hardware mechanisms can help provide assurance for systems without. Also of interest were proposals to enhance existing security mechanisms and protocols, security models where the browser is not trusted by the web application, and enhancements to the browser itself
    • …
    corecore