125,806 research outputs found

    Identification of arches in 2D granular packings

    Full text link
    We identify arches in a bed of granular disks generated by a molecular dynamic-type simulation. We use the history of the deposition of the particles to identify the supporting contacts of each particle. Then, arches are defined as sets of mutually stable disks. Different packings generated through tapping are analyzed. The possibility of identifying arches from the static structure of a deposited bed, without any information on the history of the deposition, is discussed.Comment: 12 pages, 7 figure

    The shape of jamming arches in two-dimensional deposits of granular materials

    Get PDF
    We present experimental results on the shape of arches that block the outlet of a two dimensional silo. For a range of outlet sizes, we measure some properties of the arches such as the number of particles involved, the span, the aspect ratio, and the angles between mutually stabilizing particles. These measurements shed light on the role of frictional tangential forces in arching. In addition, we find that arches tend to adopt an aspect ratio (the quotient between height and half the span) close to one, suggesting an isotropic load. The comparison of the experimental results with data from numerical models of the arches formed in the bulk of a granular column reveals the similarities of both, as well as some limitations in the few existing models.Comment: 8 pages; submitted to Physical Review

    The proper motion of the Arches cluster with Keck Laser-Guide Star Adaptive Optics

    Get PDF
    We present the first measurement of the proper motion of the young, compact Arches cluster near the Galactic center from near-infrared adaptive optics (AO) data taken with the recently commissioned laser-guide star (LGS) at the Keck 10-m telescope. The excellent astrometric accuracy achieved with LGS-AO provides the basis for a detailed comparison with VLT/NAOS-CONICA data taken 4.3 years earlier. Over the 4.3 year baseline, a spatial displacement of the Arches cluster with respect to the field population is measured to be 24.0 +/- 2.2 mas, corresponding to a proper motion of 5.6 +/- 0.5 mas/yr or 212 +/- 29 km/s at a distance of 8 kpc. In combination with the known line-of-sight velocity of the cluster, we derive a 3D space motion of 232 +/- 30 km/s of the Arches relative to the field. The large proper motion of the Arches cannot be explained with any of the closed orbital families observed in gas clouds in the bar potential of the inner Galaxy, but would be consistent with the Arches being on a transitional trajectory from x1 to x2 orbits. We investigate a cloud-cloud collision as the possible origin for the Arches cluster. The integration of the cluster orbit in the potential of the inner Galaxy suggests that the cluster passes within 10 pc of the supermassive black hole only if its true GC distance is very close to its projected distance. A contribution of young stars from the Arches cluster to the young stellar population in the inner few parsecs of the GC thus appears increasingly unlikely. The measurement of the 3D velocity and orbital analysis provides the first observational evidence that Arches-like clusters do not spiral into the GC. This confirms that no progenitor clusters to the nuclear cluster are observed at the present epoch.Comment: 22 pdflatex pages including 12 figures, reviewed version accepted by Ap

    An experimental investigation of retro-reinforced clay brick arches

    No full text
    This paper describes the laboratory testing of eight 2.95m span segmental profile clay brick arches. Seven of the arches were strengthened with longitudinal intrados (soffit) reinforcement; the eighth was left unreinforced as an experimental control. Three of the arches also contained reinforcement to resist inter-ring shear. The barrel of each arch consisted of 3 rings of brickwork laid in stretcher bond; the compressive strength of the mortar used in the arch construction varied from 1.7 to 6.2 MPa. In each case a full width line load was applied incrementally to the arch extrados at quarter span until collapse occurred. Surface crack development and the vertical deflection profile of each arch were recorded at each load increment. In all cases, the longitudinal reinforcement was found to delay the onset of cracking and to increase the load carrying capacity. As expected, premature failure by ring separation was found to occur in the arches constructed with the weakest mortar without inter-ring reinforcement. Radial dowels were found to be the most effective means of preventing ring separation. The effect of the longitudinal reinforcement was found to be greatest in the arches where measures were taken to prevent ring separation

    Internal Avalanches in a Granular Medium

    Get PDF
    Avalanches of grain displacements can be generated by creating local voids within the interior of a granular material at rest in a bin. Modeling such a two-dimensional granular system by a collection of mono-disperse discs, the system on repeated perturbations, shows all signatures of Self-Organized Criticality. During the propagation of avalanches the competition among grains creates arches and in the critical state a distribution of arches of different sizes is obtained. Using a cellular automata model we demonstrate that the existence of arches determines the universal behaviour of the model system.Comment: 4 pages (Revtex), Four ps figures (included

    The present day mass function in the central region of the Arches cluster

    Get PDF
    We study the evolution of the mass function in young and dense star clusters by means of direct N-body simulations. Our main aim is to explain the recent observations of the relatively flat mass function observed near the centre of the Arches star cluster. In this region, the power law index of the mass function for stars more massive than about 5-6 solar mass, is larger than the Salpeter value by about unity; whereas further out, and for the lower mass stars, the mass function resembles the Salpeter distribution. We show that the peculiarities in the Arches mass function can be explained satisfactorily without primordial mass segregation. We draw two conclusions from our simulations: 1) The Arches initial mass function is consistent with a Salpeter slope down to ~1 solar mass, 2) The cluster is about half way towards core collapse. The cores of other star clusters with characteristics similar to those of the Arches are expected to show similar flattening in the mass functions for the high mass (>5 solar mass) stars.Comment: 6 pages with 6 figures and 1 table. Submitted to the letters section of MNRAS. Incorporates changes following suggestions by the refere

    Role of vibrations in the jamming and unjamming of grains discharging from a silo

    Get PDF
    We present experimental results of the jamming of non-cohesive particles discharged from a flat bottomed silo subjected to vertical vibration. When the exit orifice is only a few grain diameter wide, the flow can be arrested due to the formation of blocking arches. Hence, an external excitation is needed to resume the flow. The use of a continuous gentle vibration is a usual technique to ease the flow in such situations. Even though jamming is less frequent, it is still an issue in vibrated silos. There are, in principle, two possible mechanisms through which vibrations may facilitate the flow: (i) a decrease in the probability of the formation of blocking arches, and (ii) the breakage of blocking arches once they have been formed. By measuring the time intervals inside an avalanche during which no particles flow through the outlet, we are able to estimate the probability of breaking a blocking arch by vibrations. The result agrees with the prediction of a bivariate probabilistic model in which the formation of blocking arches is equally probable in vibrated and non-vibrated silos. This indicates that the second aforementioned mechanism is the main responsible for improving the flowability in gently vibrated silos

    Metallicity in the Galactic Center: The Arches cluster

    Full text link
    We present a quantitative spectral analysis of five very massive stars in the Arches cluster, located near the Galactic center, to determine stellar parameters, stellar wind properties and, most importantly, metallicity content. The analysis uses a new technique, presented here for the first time, and uses line-blanketed NLTE wind/atmosphere models fit to high-resolution near-infrared spectra of late-type nitrogen-rich Wolf-Rayet stars and OfI+ stars in the cluster. It relies on the fact that massive stars reach a maximum nitrogen abundance that is related to initial metallicity when they are in the WNL phase. We determine the present-day nitrogen abundance of the WNL stars in the Arches cluster to be 1.6% (mass fraction) and constrain the stellar metallicity in the cluster to be solar. This result is invariant to assumptions about the mass-luminosity relationship, the mass-loss rates, and rotation speeds. In addition, from this analysis, we find the age of the Arches cluster to be 2-2.5Myr, assuming coeval formation
    corecore