529 research outputs found

    SEAN: Image Synthesis with Semantic Region-Adaptive Normalization

    Full text link
    We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.Comment: Accepted as a CVPR 2020 oral paper. The interactive demo is available at https://youtu.be/0Vbj9xFgoU

    Interpreting Adversarially Trained Convolutional Neural Networks

    Full text link
    We attempt to interpret how adversarially trained convolutional neural networks (AT-CNNs) recognize objects. We design systematic approaches to interpret AT-CNNs in both qualitative and quantitative ways and compare them with normally trained models. Surprisingly, we find that adversarial training alleviates the texture bias of standard CNNs when trained on object recognition tasks, and helps CNNs learn a more shape-biased representation. We validate our hypothesis from two aspects. First, we compare the salience maps of AT-CNNs and standard CNNs on clean images and images under different transformations. The comparison could visually show that the prediction of the two types of CNNs is sensitive to dramatically different types of features. Second, to achieve quantitative verification, we construct additional test datasets that destroy either textures or shapes, such as style-transferred version of clean data, saturated images and patch-shuffled ones, and then evaluate the classification accuracy of AT-CNNs and normal CNNs on these datasets. Our findings shed some light on why AT-CNNs are more robust than those normally trained ones and contribute to a better understanding of adversarial training over CNNs from an interpretation perspective.Comment: To apper in ICML1

    SurReal: enhancing Surgical simulation Realism using style transfer

    Get PDF
    Surgical simulation is an increasingly important element of surgical education. Using simulation can be a means to address some of the significant challenges in developing surgical skills with limited time and resources. The photo-realistic fidelity of simulations is a key feature that can improve the experience and transfer ratio of trainees. In this paper, we demonstrate how we can enhance the visual fidelity of existing surgical simulation by performing style transfer of multi-class labels from real surgical video onto synthetic content. We demonstrate our approach on simulations of cataract surgery using real data labels from an existing public dataset. Our results highlight the feasibility of the approach and also the powerful possibility to extend this technique to incorporate additional temporal constraints and to different applications

    Unsupervised Learning of Artistic Styles with Archetypal Style Analysis

    Get PDF
    In this paper, we introduce an unsupervised learning approach to automatically discover, summarize, and manipulate artistic styles from large collections of paintings. Our method is based on archetypal analysis, which is an unsupervised learning technique akin to sparse coding with a geometric interpretation. When applied to deep image representations from a collection of artworks, it learns a dictionary of archetypal styles, which can be easily visualized. After training the model, the style of a new image, which is characterized by local statistics of deep visual features, is approximated by a sparse convex combination of archetypes. This enables us to interpret which archetypal styles are present in the input image, and in which proportion. Finally, our approach allows us to manipulate the coefficients of the latent archetypal decomposition, and achieve various special effects such as style enhancement, transfer, and interpolation between multiple archetypes.Comment: Accepted at NIPS 2018, Montr\'eal, Canad
    corecore