26 research outputs found

    Arbitrarily regularizable graphs

    Get PDF
    A graph is regularizable if it is possible to assign weights to its edges so that all nodes have the same degree. Weights can be positive, nonnegative or arbitrary as soon as the regularization degree is not null. Positive and nonnegative regularizable graphs have been thoroughly investigated in the literature. In this work, we propose and study arbitrarily regularizable graphs. In particular, we investigate necessary and sufficient regularization conditions on the topology of the graph and of the corresponding adjacency matrix. Moreover, we study the computational complexity of the regularization problem and characterize it as a linear programming model

    The rhomboidal symmetric four-body problem

    Get PDF
    We consider the planar symmetric four-body problem with two equal masses m 1=m 3>0 at positions (±x 1(t),0) and two equal masses m 2=m 4>0 at positions (0, ±x 2(t)) at all times t, referred to as the rhomboidal symmetric four-body problem. Owing to the simplicity of the equations of motion this problem is well suited to study regularization of the binary collisions, periodic solutions, chaotic motion, as well as the four-body collision and escape manifolds. Furthermore, resonance phenomena between the two interacting rectilinear binaries play an important rol

    Wilson loops in Five-Dimensional Super-Yang-Mills

    Get PDF
    We consider circular non-BPS Maldacena-Wilson loops in five-dimensional supersymmetric Yang-Mills theory (d = 5 SYM) both as macroscopic strings in the D4-brane geometry and directly in gauge theory. We find that in the Dp-brane geometries for increasing p, p = 4 is the last value for which the radius of the string worldsheet describing the Wilson loop is independent of the UV cut-off. It is also the last value for which the area of the worldsheet can be (at least partially) regularized by the standard Legendre transformation. The asymptotics of the string worldsheet allow the remaining divergence in the regularized area to be determined, and it is found to be logarithmic in the UV cut-off. We also consider the M2-brane in AdS_7 x S^4 which is the M-theory lift of the Wilson loop, and dual to a "Wilson surface" in the (2,0), d = 6 CFT. We find that it has exactly the same logarithmic divergence in its regularized action. The origin of the divergence has been previously understood in terms of a conformal anomaly for surface observables in the CFT. Turning to the gauge theory, a similar picture is found in d = 5 SYM. The divergence and its coefficient can be recovered for general smooth loops by summing the leading divergences in the analytic continuation of dimensional regularization of planar rainbow/ladder diagrams. These diagrams are finite in 5 - epsilon dimensions. The interpretation is that the Wilson loop is renormalized by a factor containing this leading divergence of six-dimensional origin, and also subleading divergences, and that the remaining part of the Wilson loop expectation value is a finite, scheme-dependent quantity. We substantiate this claim by showing that the interacting diagrams at one loop are finite in our regularization scheme in d = 5 dimensions, but not for d greater than or equal to 6.Comment: 1+18 pages, 3 figures. v2 added a reference and made minor cosmetic changes, JHEP version. v3 added generalization to arbitrary smooth, closed contours, added references. v4 added references and clarified discussion beneath eq. (23
    corecore