4,624 research outputs found

    Dirty Paper Arbitrarily Varying Channel with a State-Aware Adversary

    Full text link
    In this paper, we take an arbitrarily varying channel (AVC) approach to examine the problem of writing on a dirty paper in the presence of an adversary. We consider an additive white Gaussian noise (AWGN) channel with an additive white Gaussian state, where the state is known non-causally to the encoder and the adversary, but not the decoder. We determine the randomized coding capacity of this AVC under the maximal probability of error criterion. Interestingly, it is shown that the jamming adversary disregards the state knowledge to choose a white Gaussian channel input which is independent of the state

    Filter and nested-lattice code design for fading MIMO channels with side-information

    Full text link
    Linear-assignment Gel'fand-Pinsker coding (LA-GPC) is a coding technique for channels with interference known only at the transmitter, where the known interference is treated as side-information (SI). As a special case of LA-GPC, dirty paper coding has been shown to be able to achieve the optimal interference-free rate for interference channels with perfect channel state information at the transmitter (CSIT). In the cases where only the channel distribution information at the transmitter (CDIT) is available, LA-GPC also has good (sometimes optimal) performance in a variety of fast and slow fading SI channels. In this paper, we design the filters in nested-lattice based coding to make it achieve the same rate performance as LA-GPC in multiple-input multiple-output (MIMO) channels. Compared with the random Gaussian codebooks used in previous works, our resultant coding schemes have an algebraic structure and can be implemented in practical systems. A simulation in a slow-fading channel is also provided, and near interference-free error performance is obtained. The proposed coding schemes can serve as the fundamental building blocks to achieve the promised rate performance of MIMO Gaussian broadcast channels with CDIT or perfect CSITComment: submitted to IEEE Transactions on Communications, Feb, 200

    Multiaccess Channels with State Known to Some Encoders and Independent Messages

    Full text link
    We consider a state-dependent multiaccess channel (MAC) with state non-causally known to some encoders. We derive an inner bound for the capacity region in the general discrete memoryless case and specialize to a binary noiseless case. In the case of maximum entropy channel state, we obtain the capacity region for binary noiseless MAC with one informed encoder by deriving a non-trivial outer bound for this case. For a Gaussian state-dependent MAC with one encoder being informed of the channel state, we present an inner bound by applying a slightly generalized dirty paper coding (GDPC) at the informed encoder that allows for partial state cancellation, and a trivial outer bound by providing channel state to the decoder also. The uninformed encoders benefit from the state cancellation in terms of achievable rates, however, appears that GDPC cannot completely eliminate the effect of the channel state on the achievable rate region, in contrast to the case of all encoders being informed. In the case of infinite state variance, we analyze how the uninformed encoder benefits from the informed encoder's actions using the inner bound and also provide a non-trivial outer bound for this case which is better than the trivial outer bound.Comment: Accepted to EURASIP Journal on Wireless Communication and Networking, Feb. 200
    • …
    corecore