1,462 research outputs found

    On the Relationship Between Information-Theoretic Privacy Metrics And Probabilistic Information Privacy

    Full text link
    Information-theoretic (IT) measures based on ff-divergences have recently gained interest as a measure of privacy leakage as they allow for trading off privacy against utility using only a single-value characterization. However, their operational interpretations in the privacy context are unclear. In this paper, we relate the notion of probabilistic information privacy (IP) to several IT privacy metrics based on ff-divergences. We interpret probabilistic IP under both the detection and estimation frameworks and link it to differential privacy, thus allowing a precise operational interpretation of these IT privacy metrics. We show that the χ2\chi^2-divergence privacy metric is stronger than those based on total variation distance and Kullback-Leibler divergence. Therefore, we further develop a data-driven empirical risk framework based on the χ2\chi^2-divergence privacy metric and realized using deep neural networks. This framework is agnostic to the adversarial attack model. Empirical experiments demonstrate the efficacy of our approach

    Privacy-Preserving Distributed Average Consensus based on Additive Secret Sharing

    Get PDF

    Privacy-Preserving Distributed Processing Over Networks

    Get PDF

    Learning to Generate Image Embeddings with User-level Differential Privacy

    Full text link
    Small on-device models have been successfully trained with user-level differential privacy (DP) for next word prediction and image classification tasks in the past. However, existing methods can fail when directly applied to learn embedding models using supervised training data with a large class space. To achieve user-level DP for large image-to-embedding feature extractors, we propose DP-FedEmb, a variant of federated learning algorithms with per-user sensitivity control and noise addition, to train from user-partitioned data centralized in the datacenter. DP-FedEmb combines virtual clients, partial aggregation, private local fine-tuning, and public pretraining to achieve strong privacy utility trade-offs. We apply DP-FedEmb to train image embedding models for faces, landmarks and natural species, and demonstrate its superior utility under same privacy budget on benchmark datasets DigiFace, EMNIST, GLD and iNaturalist. We further illustrate it is possible to achieve strong user-level DP guarantees of ϵ<2\epsilon<2 while controlling the utility drop within 5%, when millions of users can participate in training

    Novel approaches to anonymity and privacy in decentralized, open settings

    Get PDF
    The Internet has undergone dramatic changes in the last two decades, evolving from a mere communication network to a global multimedia platform in which billions of users actively exchange information. While this transformation has brought tremendous benefits to society, it has also created new threats to online privacy that existing technology is failing to keep pace with. In this dissertation, we present the results of two lines of research that developed two novel approaches to anonymity and privacy in decentralized, open settings. First, we examine the issue of attribute and identity disclosure in open settings and develop the novel notion of (k,d)-anonymity for open settings that we extensively study and validate experimentally. Furthermore, we investigate the relationship between anonymity and linkability using the notion of (k,d)-anonymity and show that, in contrast to the traditional closed setting, anonymity within one online community does necessarily imply unlinkability across different online communities in the decentralized, open setting. Secondly, we consider the transitive diffusion of information that is shared in social networks and spread through pairwise interactions of user connected in this social network. We develop the novel approach of exposure minimization to control the diffusion of information within an open network, allowing the owner to minimize its exposure by suitably choosing who they share their information with. We implement our algorithms and investigate the practical limitations of user side exposure minimization in large social networks. At their core, both of these approaches present a departure from the provable privacy guarantees that we can achieve in closed settings and a step towards sound assessments of privacy risks in decentralized, open settings.Das Internet hat in den letzten zwei Jahrzehnten eine drastische Transformation erlebt und entwickelte sich dabei von einem einfachen Kommunikationsnetzwerk zu einer globalen Multimedia Plattform auf der Milliarden von Nutzern aktiv Informationen austauschen. Diese Transformation hat zwar einen gewaltigen Nutzen und vielfältige Vorteile für die Gesellschaft mit sich gebracht, hat aber gleichzeitig auch neue Herausforderungen und Gefahren für online Privacy mit sich gebracht mit der die aktuelle Technologie nicht mithalten kann. In dieser Dissertation präsentieren wir zwei neue Ansätze für Anonymität und Privacy in dezentralisierten und offenen Systemen. Mit unserem ersten Ansatz untersuchen wir das Problem der Attribut- und Identitätspreisgabe in offenen Netzwerken und entwickeln hierzu den Begriff der (k, d)-Anonymität für offene Systeme welchen wir extensiv analysieren und anschließend experimentell validieren. Zusätzlich untersuchen wir die Beziehung zwischen Anonymität und Unlinkability in offenen Systemen mithilfe des Begriff der (k, d)-Anonymität und zeigen, dass, im Gegensatz zu traditionell betrachteten, abgeschlossenen Systeme, Anonymität innerhalb einer Online Community nicht zwingend die Unlinkability zwischen verschiedenen Online Communitys impliziert. Mit unserem zweiten Ansatz untersuchen wir die transitive Diffusion von Information die in Sozialen Netzwerken geteilt wird und sich dann durch die paarweisen Interaktionen von Nutzern durch eben dieses Netzwerk ausbreitet. Wir entwickeln eine neue Methode zur Kontrolle der Ausbreitung dieser Information durch die Minimierung ihrer Exposure, was dem Besitzer dieser Information erlaubt zu kontrollieren wie weit sich deren Information ausbreitet indem diese initial mit einer sorgfältig gewählten Menge von Nutzern geteilt wird. Wir implementieren die hierzu entwickelten Algorithmen und untersuchen die praktischen Grenzen der Exposure Minimierung, wenn sie von Nutzerseite für große Netzwerke ausgeführt werden soll. Beide hier vorgestellten Ansätze verbindet eine Neuausrichtung der Aussagen die diese bezüglich Privacy treffen: wir bewegen uns weg von beweisbaren Privacy Garantien für abgeschlossene Systeme, und machen einen Schritt zu robusten Privacy Risikoeinschätzungen für dezentralisierte, offene Systeme in denen solche beweisbaren Garantien nicht möglich sind

    Privacy and Robustness in Federated Learning: Attacks and Defenses

    Full text link
    As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.Comment: arXiv admin note: text overlap with arXiv:2003.02133; text overlap with arXiv:1911.11815 by other author
    corecore