2,976 research outputs found

    Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

    Full text link
    Bayesian optimization has become a successful tool for hyperparameter optimization of machine learning algorithms, such as support vector machines or deep neural networks. Despite its success, for large datasets, training and validating a single configuration often takes hours, days, or even weeks, which limits the achievable performance. To accelerate hyperparameter optimization, we propose a generative model for the validation error as a function of training set size, which is learned during the optimization process and allows exploration of preliminary configurations on small subsets, by extrapolating to the full dataset. We construct a Bayesian optimization procedure, dubbed Fabolas, which models loss and training time as a function of dataset size and automatically trades off high information gain about the global optimum against computational cost. Experiments optimizing support vector machines and deep neural networks show that Fabolas often finds high-quality solutions 10 to 100 times faster than other state-of-the-art Bayesian optimization methods or the recently proposed bandit strategy Hyperband

    Can Entropy Explain Successor Surprisal Effects in Reading?

    Get PDF
    Human reading behavior is sensitive to surprisal: more predictable words tend to be read faster. Unexpectedly, this applies not only to the surprisal of the word that is currently being read, but also to the surprisal of upcoming (successor) words that have not been fixated yet. This finding has been interpreted as evidence that readers can extract lexical information parafoveally. Calling this interpretation into question, Angele et al. (2015) showed that successor effects appear even in contexts in which those successor words are not yet visible. They hypothesized that successor surprisal predicts reading time because it approximates the reader’s uncertainty about upcoming words. We test this hypothesis on a reading time corpus using an LSTM language model, and find that successor surprisal and entropy are independent predictors of reading time. This independence suggests that entropy alone is unlikely to be the full explanation for successor surprisal effects

    The Missing Link between Morphemic Assemblies and Behavioral Responses:a Bayesian Information-Theoretical model of lexical processing

    Get PDF
    We present the Bayesian Information-Theoretical (BIT) model of lexical processing: A mathematical model illustrating a novel approach to the modelling of language processes. The model shows how a neurophysiological theory of lexical processing relying on Hebbian association and neural assemblies can directly account for a variety of effects previously observed in behavioural experiments. We develop two information-theoretical measures of the distribution of usages of a morpheme or word, and use them to predict responses in three visual lexical decision datasets investigating inflectional morphology and polysemy. Our model offers a neurophysiological basis for the effects of morpho-semantic neighbourhoods. These results demonstrate how distributed patterns of activation naturally result in the arisal of symbolic structures. We conclude by arguing that the modelling framework exemplified here, is a powerful tool for integrating behavioural and neurophysiological results

    System Identification Methods Applied to Measured Seismic Response

    Get PDF
    A unified Bayesian statistical framework is described for system identification which can be used to extract important information for earthquake-resistant design from the measured seismic response of structures. In this approach, the "best" (optimal) models within a chosen class of models are those which are locally most probable based on the available data. Using the methodology, one can determine the prediction accuracy of the optimal structural models, the precision of the parameter estimates of these models as well as the precision of the optimal prediction-error probability models, the updated predictive probability density function for the structural response even when there are multiple optimal models, and a principle of parsimony for comparing different classes of models on the same data. The application of modal identification to measured seismic response from some buildings, a bridge and an off-shore platform is reviewed. An example is also given of how the methodology can be used to handle the nonuniqueness in structural model identification. This often arises in practice because of the low density of sensors which is typical of structural seismic instrumentation arrays
    • …
    corecore