8 research outputs found

    Approximation of the determinant of large sparse symmetric positive definite matrices

    Get PDF
    This paper is concerned with the problem of approximating the determinant of A for a large sparse symmetric positive definite matrix A. It is shown that an efficient solution of this problem is obtained by using a sparse approximate inverse of A. The method is explained and theoretical properties are discussed. A posteriori error estimation techniques are presented. Furthermore, results of numerical experiments are given which illustrate the performance of this new method

    Model Selection with the Loss Rank Principle

    Full text link
    A key issue in statistics and machine learning is to automatically select the "right" model complexity, e.g., the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. We suggest a novel principle - the Loss Rank Principle (LoRP) - for model selection in regression and classification. It is based on the loss rank, which counts how many other (fictitious) data would be fitted better. LoRP selects the model that has minimal loss rank. Unlike most penalized maximum likelihood variants (AIC, BIC, MDL), LoRP depends only on the regression functions and the loss function. It works without a stochastic noise model, and is directly applicable to any non-parametric regressor, like kNN.Comment: 31 LaTeX pages, 1 figur

    Approximation of the determinant of large sparse symmetric positive definite matrices

    No full text
    This paper is concerned with the problem of approximating det(A)"1"/"n for a large sparse symmetric positive definite matrix A of order n. It is shown that an efficient solution of this problem is obtained by using a sparse approximate inverse of A. The method is explained and theoretical properties are discussed. A posteriori error estimation techniques are presented. Furthermore, results of numerical experiments are given which illustrate the performance of this new method. (orig.)Available from TIB Hannover: RN 8680(187) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging

    Get PDF
    In der angewandten Statistik können Regressionsmodelle mit hochdimensionalen Koeffizienten auftreten, die sich nicht mit gewöhnlichen Computersystemen schätzen lassen. Dies betrifft unter anderem die Analyse digitaler Bilder unter Berücksichtigung räumlich-zeitlicher Abhängigkeiten, wie sie innerhalb der medizinisch-biologischen Forschung häufig vorkommen. In der vorliegenden Arbeit wird ein Verfahren formuliert, das in der Lage ist, Regressionsmodelle mit hochdimensionalen Koeffizienten und nicht-normalverteilten Zielgrößen unter moderaten Anforderungen an die benötigte Hardware zu schätzen. Hierzu wird zunächst im Rahmen strukturiert additiver Regressionsmodelle aufgezeigt, worin die Limitationen aktueller Inferenzansätze bei der Anwendung auf hochdimensionale Problemstellungen liegen, sowie Möglichkeiten diskutiert, diese zu umgehen. Darauf basierend wird ein Algorithmus formuliert, dessen Stärken und Schwächen anhand von Simulationsstudien analysiert werden. Darüber hinaus findet das Verfahren Anwendung in drei verschiedenen Bereichen der medizinisch-biologischen Bildgebung und zeigt dadurch, dass es ein vielversprechender Kandidat für die Beantwortung hochdimensionaler Fragestellungen ist.In applied statistics regression models with high-dimensional coefficients can occur which cannot be estimated using ordinary computers. Amongst others, this applies to the analysis of digital images taking spatio-temporal dependencies into account as they commonly occur within bio-medical research. In this thesis a procedure is formulated which allows to fit regression models with high-dimensional coefficients and non-normal response values requiring only moderate computational equipment. To this end, limitations of different inference strategies for structured additive regression models are demonstrated when applied to high-dimensional problems and possible solutions are discussed. Based thereon an algorithm is formulated whose strengths and weaknesses are subsequently analyzed using simulation studies. Furthermore, the procedure is applied to three different fields of bio-medical imaging from which can be concluded that the algorithm is a promising candidate for answering high-dimensional problems

    Biostatistical modeling and analysis of combined fMRI and EEG measurements

    Get PDF
    The purpose of brain mapping is to advance the understanding of the relationship between structure and function in the human brain. Several techniques---with different advantages and disadvantages---exist for recording neural activity. Functional magnetic resonance imaging (fMRI) has a high spatial resolution, but low temporal resolution. It also suffers from a low-signal-to-noise ratio in event-related experimental designs, which are commonly used to investigate neuronal brain activity. On the other hand, the high temporal resolution of electroencephalography (EEG) recordings allows to capture provoked event-related potentials. Though, 3D maps derived by EEG source reconstruction methods have a low spatial resolution, they provide complementary information about the location of neuronal activity. There is a strong interest in combining data from both modalities to gain a deeper knowledge of brain functioning through advanced statistical modeling. In this thesis, a new Bayesian method is proposed for enhancing fMRI activation detection by the use of EEG-based spatial prior information in stimulus based experimental paradigms. This method builds upon a newly developed mere fMRI activation detection method. In general, activation detection corresponds to stimulus predictor components having an effect on the fMRI signal trajectory in a voxelwise linear model. We model and analyze stimulus influence by a spatial Bayesian variable selection scheme, and extend existing high-dimensional regression methods by incorporating prior information on binary selection indicators via a latent probit regression. For mere fMRI activation detection, the predictor consists of a spatially-varying intercept only. For EEG-enhanced schemes, an EEG effect is added, which is either chosen to be spatially-varying or constant. Spatially-varying effects are regularized by different Markov random field priors. Statistical inference in resulting high-dimensional hierarchical models becomes rather challenging from a modeling perspective as well as with regard to numerical issues. In this thesis, inference is based on a Markov Chain Monte Carlo (MCMC) approach relying on global updates of effect maps. Additionally, a faster algorithm is developed based on single-site updates to circumvent the computationally intensive, high-dimensional, sparse Cholesky decompositions. The proposed algorithms are examined in both simulation studies and real-world applications. Performance is evaluated in terms of convergency properties, the ability to produce interpretable results, and the sensitivity and specificity of corresponding activation classification rules. The main question is whether the use of EEG information can increase the power of fMRI models to detect activated voxels. In summary, the new algorithms show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM. Carefully selected EEG-prior information additionally increases sensitivity in activation regions that have been distorted by a low signal-to-noise ratio
    corecore