81,432 research outputs found

    Approximation of smooth periodic functions in several variables

    Get PDF

    Computing with functions in spherical and polar geometries I. The sphere

    Get PDF
    A collection of algorithms is described for numerically computing with smooth functions defined on the unit sphere. Functions are approximated to essentially machine precision by using a structure-preserving iterative variant of Gaussian elimination together with the double Fourier sphere method. We show that this procedure allows for stable differentiation, reduces the oversampling of functions near the poles, and converges for certain analytic functions. Operations such as function evaluation, differentiation, and integration are particularly efficient and can be computed by essentially one-dimensional algorithms. A highlight is an optimal complexity direct solver for Poisson's equation on the sphere using a spectral method. Without parallelization, we solve Poisson's equation with 100100 million degrees of freedom in one minute on a standard laptop. Numerical results are presented throughout. In a companion paper (part II) we extend the ideas presented here to computing with functions on the disk.Comment: 23 page

    Multiscale Problems in Solidification Processes

    Get PDF
    Our objective is to describe solidification phenomena in alloy systems. In the classical approach, balance equations in the phases are coupled to conditions on the phase boundaries which are modelled as moving hypersurfaces. The Gibbs-Thomson condition ensures that the evolution is consistent with thermodynamics. We present a derivation of that condition by defining the motion via a localized gradient flow of the entropy. Another general framework for modelling solidification of alloys with multiple phases and components is based on the phase field approach. The phase boundary motion is then given by a system of Allen-Cahn type equations for order parameters. In the sharp interface limit, i.e., if the smallest length scale ± related to the thickness of the diffuse phase boundaries converges to zero, a model with moving boundaries is recovered. In the case of two phases it can even be shown that the approximation of the sharp interface model by the phase field model is of second order in ±. Nowadays it is not possible to simulate the microstructure evolution in a whole workpiece. We present a two-scale model derived by homogenization methods including a mathematical justification by an estimate of the model error

    Semiclassical spatial correlations in chaotic wave functions

    Full text link
    We study the spatial autocorrelation of energy eigenfunctions ψn(q)\psi_n({\bf q}) corresponding to classically chaotic systems in the semiclassical regime. Our analysis is based on the Weyl-Wigner formalism for the spectral average Cϵ(q+,q−,E)C_{\epsilon}({\bf q^{+}},{\bf q^{-}},E) of ψn(q+)ψn∗(q−)\psi_n({\bf q}^{+})\psi_n^*({\bf q}^{-}), defined as the average over eigenstates within an energy window ϵ\epsilon centered at EE. In this framework CϵC_{\epsilon} is the Fourier transform in momentum space of the spectral Wigner function W(x,E;ϵ)W({\bf x},E;\epsilon). Our study reveals the chord structure that CϵC_{\epsilon} inherits from the spectral Wigner function showing the interplay between the size of the spectral average window, and the spatial separation scale. We discuss under which conditions is it possible to define a local system independent regime for CϵC_{\epsilon}. In doing so, we derive an expression that bridges the existing formulae in the literature and find expressions for Cϵ(q+,q−,E)C_{\epsilon}({\bf q^{+}}, {\bf q^{-}},E) valid for any separation size ∣q+−q−∣|{\bf q^{+}}-{\bf q^{-}}|.Comment: 24 pages, 3 figures, submitted to PR

    Some Results on the Complexity of Numerical Integration

    Full text link
    This is a survey (21 pages, 124 references) written for the MCQMC 2014 conference in Leuven, April 2014. We start with the seminal paper of Bakhvalov (1959) and end with new results on the curse of dimension and on the complexity of oscillatory integrals. Some small errors of earlier versions are corrected
    • …
    corecore