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Given the k-tuples 

a = (a,, az, . . . , a3 E Rk and r = (rt , r2, . . , rk) E N’, 

let o, riT[O, 2~1, and J0 = J&I, r) be defined by 

W =j, llrj, mo, 2rl 

= {f: Rk + C: f is 27~ periodic w.r.t. each variable Xj, 

belongs to L2 = L&O, 27rI)}, 

exists a.e. and 

where T = T(a, r) is a differential operator of the form 

k 

Tf = 2 a,$f 
j=l 4 

and I[.(( is the norm in L2. This paper deals with optimal approximation of func- 
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tions f from the class JO by algorithms I#I whose sole knowledge about f consists of 
the n-tuples 

N,(f) = (L,(f), Mf), 1 L”(f)). 

where adaptive choice of the linear functionals Lj : Lz + @ is allowed. We define 
the best approximation rate R(n) = R(n, JO, L2) by 

and prove that R(n) = O(K~'~) as n + +z. if the following condition is satisfied: 

r contains at most one odd component; and 

#O 

(-. 

if r, is odd, 

sign n, = u if r, is a multiple of 4, 

otherwise, V,, 

where u = 5 1. Moreover we obtain the limit lim,,, t~l'~R(n). We also prove that 
when this condition does not hold, then, even if R(n, Jo(a, r), L2) is finite, an 
arbitrary small perturbation of a might lead to a class J,,(a’, r) in which the opera- 
tor T’ = T(a’, r) is such that dim kerT’ = +x. Then R(n, Jo(a’, r), &) = += and no 
finite error approximation based on N,, would be possible. o 1988 Academic PESS. IK. 

1. INTRODUCTION 

This paper deals with approximation of smooth periodic functions in k- 
variables. We list some results which are relevant to this topic. 

Let 51. 52, . . . be an orthonormal basis of an infinite dimensional 
separable Hilbert space H, i.e., (LJj,t 51) = Sj,, where Sjc is the Kronecker 
delta. Given a sequence of complex numbers {&}jE+, such that 

let us define 

JO = {f E H: IlTfll = (i IPj(f, t'j)Iz)"* 5 l}, 
j=l 

where 

and (14 = (*,*I “2 is the norm in H. 
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Suppose we wish to approximate any f E Jo as closely as possible from 
a knowledge of the n-tuples N:(f) of the form 

NW) = (L,(f), . . . , L(f)), 

where adaptive choice of the linear functions Li : H + @ is allowed, i.e., 

Lj = Lj(LI(f)3 L2(f)3 . . 3 Lj-l(f)), j = 2, 3, . . . 3 n. 

That is, we are looking for information operator Nt and a mapping (algo- 
rithm) 4 : Ni(.J”) -+ H which together minimize the quantity 

Let us define the best approximation rate R(n) = R(n, Jo, LJ by 

R(n) = inf 44; N). (1) 
N::.&N::(J++H 

It turns out that (see Traub and Woiniakowski, 1980, Chap. 6): 

(i) The infimum in (1) is achieved by the nonadaptive information 
operator 

N,OP’: WP’(f) = ((f, 511, (f, &), . . . 3 (f, 5n)) 

and the linear algorithm 

(ii) The best approximation rate is 

R(n) = lliPn+,l. 

(iii) Moreover, 

R(n) = d”(Jo, HI = A,(Jo, HI, 

where d”(Jo, H) and h,(Jo, H) are Gelfand’s n-width of Jo and Kolmo- 
gorov’s linear n-width of Jo, respectively; that is, 
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d”(Jo, H) = inf A,~cH SUP II-4 
.XEJ”llA” 

codim A”Sn 

and 

h,,(Jo, H) = inf inf sup I/x - Axll. 
A,,CtI A : tl-Hllin. op.) it&~ 

dim A,,-!, A.hCA,, 

Gelfand’s and Kolmogorov’s widths play an important role in approxi- 
mation theory (see Karnejcuk, 1976; Tichomirov, 1976; Babenko, 1979; 
Pinkus, 1985) and, because of (iii) and other much more general results, in 
information based complexity (see Traub and Woiniakowski [1980]). 

We choose as our space H, the space Lz of square integrable functions 
g : [0, 2~1~ -+ C. Given k-tuples 

a = (a,, aI, . . . , uk) E W 

and 

r = (r,, i-2, . . . , rk) E Nx 

let us define the Sobalev space wz[O, 2771, the differential operator T = 
T(a, r), the class Jo = Jo(a, r), and the number o = w(r) by 

= {f: [wL + @:f is 23~ periodic w.r.t. each variable -ri, 
6’1 

exists a.e. and belongs to L2}, 
&f 

i! 6’J 
Tf = 2 a,-f, (2) .j= I a’:, 

Jo = {f E @[O, 27~1: llTf/ 5 I}, 

and 
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Using the results mentioned above and the Davenport theorem on inte- 
ger coordinate points in multidimensional bodies we prove that 

R(n, Jo, L.2) = d”(Jo, 151) = h,(Jo, L2) = 13(x’lw) asn+ +x 

if a and r satisfy the following condition: 

r contains at most one odd component; and 

if rj is odd, 

if rj is a multiple of 4, 

otherwise, Vj, 

CC) 

where u = +l. Moreover, we obtain the limit lim,+, n”“R(n, Jo, L2). 
So, when (C) holds, the asymptotics of dn(Jo, Lz) and h,(Jo, L2) coin- 

cide with the asymptotics of Gelfand’s and Kolmogorov’s n-widths of 
some other classes of smooth multivariate functions (see Babenko, 1977). 

If(C) is not satisfied, the nature of the results changes. Namely, there 
exists v in (1, 2, . . . , k} such that for any E > 0 there is a: satisfying 

la,, - a:/ % E and R(n, Jda’, r), ~5) = +x, V,,, 

where 

a’ = (a,, . . . , a,-], al, a,+ 1, . . . , ak). 

In other words, even if R(n, Jo, (a, r), Lz) is finite, an arbitrary small 
perturbation of a might lead to a class Jo(a’, r) in which the operator T’ = 
T(a’, r) is such that dim ker T’ = + co, so no finite error approximation 
based on N, would be possible (see Traub and Woiniakowski, 1980, 
Chap. 2). 

In Section 2 we shall give a more precise formulation of our results. 

2. ASYMPTOTICS 

In the following theorem I and B stand for gamma and beta functions, 
respectively. 

THEOREM 1. Given any positive integer n and given arbitrary n-tuples 
a E W, r E N” we have 

Nn, JO, (a, r>, L2) = d”Uda, r), Ld = MJda, r), &I. 
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Moreover, if a and r satisfy the condition (C), then 

lim n”“R(n, Ja(a, r)Lz) 
fl++x 

r(1 

= when r contains no odd component, 

2k-‘B(1/2r,Y, 1 + (w - llr,S)/2) k r( 1 lrj) Uw 
r(llr,T)r(l + 0 - l/r,) TJ YjlUjl”rJ I 

when r, is odd, 

otherwise either 

R(n 

or else there exists v in 
al satisfying 

la, - aLI I E 

where 

(3) 

, Job, d, U = +x3 v IlEN 9 

{1,2,. . . , k} such that for any positive E there is 

and R(n, Job’, r), Lz) = +x. ‘dnEkr 

a’ = (al, . . . , a”-1, ai, au+lr . . . , ak). 

Proof. The first statement is a consequence of general results on ap- 
proximation in Hilbert spaces (see Traub and Woiniakowski, 1980, 
Chaps. 2 and 3). 

Let us denote by Z the set of all integers. 
Given a k-tuple t = (t, , t2, . . . , tk) E Zh we define the function et E 

l@;[O, 27r] by the equation 

et(x) = (2~))~‘~ exp(f!(x, t)), 

wherei=fl,x=(x,,X2,. . . , .rk) E [O, 27r]‘, and (x, t) = xi=, xitj. 
The set {et}tEzk is an orthonormal basis of L2 and for T = T(a, r) we have 

Tet = btet, 
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where 

bl = i aj(itj)q. 
j=l 

(4) 

Thus, 

Jo = Job, r) = [f E LZ : ,& Ibt(f, e# 5 11. (5) 

Let us suppose that the tuples a and r satisfy the condition (C). Then 

lb,/ = 4 if r contains no odd component, 

[ (,=$#t Yi(g + (a.,t:.)‘]“2 
1 

\ if Y., is odd, 

where aj = lajl > 0. 
Since 

for some numbers fij such that 

we have 

Corresponding to a fixes m in N, let I,, be the number of k-tuples t E Zh 
such that lb,/ - -= m, i.e., I,, is the number of integer coordinate points of the 
convex body 
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B, = {x E R”: ( if r contains no odd component }, (7) 

L if r, is odd. 

We shall prove in the text section that 

lim AL = y: = 
m-X m, 

I 

if r contains no odd component, 03) 

2km’B(1/2r,,, 1 + (0 - llr,V)/2) ’ r(llrj) 
I(l/r,)I(w - I/r,, + 1) n j=, * 

(if r,, is odd 

(see Lemma 2, Section 3). 
The definition of Z,, implies that 

therefore we get 

lim )&Im-“” = y-“QJ. 
F?,-+* 

This identity taken taken together with (ii) yields (3). 
Let us suppose now that a and r do not satisfy the condition (C). Then 

a, = 0 for some s, 

or else from (4) we have 

with some u and v such that 0 < lap/ 5 la,,/. 
In the first case, when a, = 0 for some s, we have 
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e(o 9 ,,,.. ot o .._ . 0) E JO and ho ,..., OJ,,O ,..., 0) = 0, v,,,,. 

Consequently, 

dim kerT = +a 

which yields 

R(n, Jo, Lz) = += 

(see Traub and Woiniakowski, 1980, Chap. 2). 
In the second case, we set A = a,ia,,. Then 

)hl”‘,c = $ hj2-j (9) 

for some hi E (0, I}. Let us note now that for arbitrary I, 171 E N, where I > 
m, the numbers 

x = 2’5 2 Aj2-i and y zr 2”,, 
1’1 

satisfy the equation 

Ia,,Ixrs, - la:iy”v = 0, 

where 

a: = (sign a,) ($ A,2+]“’ /a,,/. (10) 

Hence, upon replacing a in (2) with 

a’ = (al, . . , avmlr a:, a,+i, . . . , ad 

we obtain the class JA = Ja(a’, r) in which the operator T’ = T(a’, I) is such 
that T’e, = 0 for any t satisfying tj = 0 if j f U, V. Since the functions e, 
belong to Jo we have 

Consequently, 

dim ker T’ = +x. 

R(n, J;, Lz) = Sm. 
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Finally, we note by (9) and (10) that a: + a, as m --+ +m. This completes 
the proof. n 

As an immediate consequence of Theorem 1 we have the following 
corollary. 

COROLLARY. If a E iw” and r E Nk satisfy the condition (C), then 

R(n) = R(n, Jda, r), Lz) = 13(n-“~) as n + +x. 

To illustrate the dependence of this result on the dimension k let us 
consider the following example. 

EXAMPLE 1. Let a and r be defined by the equations 

aj = 1 and rj = 2, vjli= 1,2,....k. 

That is, T in (2) is the k-dimensional Laplace operator. 
Since the condition (C) holds and w = k/2, we get 

R(n) = e(n-2’k) as n + +x, 

Thus, if k is large, R(n) converges to zero very slowly. 

From the results of Traub and Woiniakowski (1980, Chap. 6), it follows 
that our approximation problem is convergent, i.e., 

lim R(n, Jda, r), L2) = 0 
v+x 

if and only if +a is the unique limit point of the set 

where numbers b, are given by (4). 
Let us suppose now that the tuples a and r do not satisfy the condition 

(C). Hence, by Theorem 1, an arbitrary small perturbation of components 
aj might lead to a class Jo(a’, r) such that R(n, Jo(a’, r), 152) = +w for any 
n. The following examples show that the convergency and the divergency 
of the original approximation problem for the class J,,(a, r) are both possi- 
ble. 

EXAMPLE 2. Let k = 2, a = (a, -/3), and r = (m, m), where (Y, /3, m E 
N, m 2 3, and the binary form 

F(x, y) = cam - py” 
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is irreducible over the field of rational numbers. It is easy to note that (C) 
does not hold and 

s = IIF(x, y)l: x, Y E Z). 

By the theorem of Thue (1909), for any c‘ E N the inequality 

lm, Y)I 5 ( 

has at most finitely many integer solutions. Of course, the number of such 
solutions goes to infinity with c. This implies that the unique limit point of 
the set S is +x. Consequently, 

lim R(n, Jo(a, r), L3) = 0. 
,I--* 4 % 

EXAMPLE 3. Let k = 2, a = (1, -D), and r = (2, 2), where 

DEN and D f m2, v,nt~. 

Then, (C) does not hold and 

S = {lx* - Dy=I, x, y E Z}. 

It is known that the equation x2 - Dy2 = 1 has infinitely many integer 
solutions (see Sierpinski, 1968, Chap. II, Sect. 17). Thus, unity is the limit 
point of S and consequently 

lim R(n, Jo(a, r), L2) f 0. 
I,-tx 

We close this section by finding asymptotics of the &-complexity of the 
approximation problem for the class Jo(a, r), where a E Rk and r E Nk 
satisfy the condition (C). 

Given E > 0, let m(c) denote the minimal number of linear functionals 
whose evaluations allow us to determine a set of functions {u~J}~~J~(~.~) 
such that 

SUP Ilf - G,fll < 8. 
I6lda.r) 

We call +f(x) an &-approximation to f(x), x E [0, 2,rrlk. 
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Let camp(s) be the minimal computing cost (complexity) of Q(X). 
Here we assume that the cost of the arithmetic operations (- , -, x , i) and 
the cost of any linear functional evaluation are taken as unity and c, 
respectively. 

We are now in a position to prove the following theorem. 

THEOREM 2. Let y be given by (8). Then 

lim m(~).sW = y 
t-o- 

(11) 

und 

camp(s) = 0(c/.+) as E + 0’. (12) 

Proof. We omit the proof of the identity (1 I), since (11) is an immedi- 
ate consequence of Theorem 1. 

Let E > 0 and x E [O, 27rlk be given. From (5), (6), and the statements (i) 
and (ii) of the introductory section it is seen that to get an s-approximation 
UJX) to f(x) for any f E Jo(a, r) one can proceed as follows. 

1. Precompute the subset SO(F) E Z” and the k-tuple t(c) such that 

and 

Ih = min Ibtl. EZ”iS”k) 

2. Define S(E) = SO(E) U {t(c)} and note that card S(E) = m(e), i.e., 
S(E) contains exactly m(s) elements. 

3. Precompute et(x) for all t E S(E). 
4. Put 

a&) = ,& (f, 4etW 

Thus, neglecting cost of precomputations, the computing cost of a,,f,(x) is 
(c + 2) card S(E) - 1 = (c + 2)m(~) - 1. This shows that 

comp(&) 5 (c + 2)m(~) - 1. 
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By the obvious inequality camp(s) > em(c) and (11) we finally get 

camp(s) = O(C/E~) as E + O+. 

This proves (12) and completes the proof. n 

3. INTEGERPOINTSOF B, 

Let Z(B) denote the number of integer coordinate points in a subset IEI of 
II%“. 

The results of this section are based on the following theorem of Daven- 
port [1951]. 

THEOREM 3. Let B be a closed bounded subset of Rn such that 

(a) For any line 2 which is parallel to one of the coordinate axes the 
intersection 2 tl EK consists of, at most, h intervals. 

(b) Property (a) holds for any of the u-dimensional regions obtained 
by projecting B onto the space R” defined by equating arbitrary n - u 
coordinates to zero. 

Then 

/Z(B) - V(B)1 5 2 h”-“V,,(B), 

where V(B) is the volume of EI and V,(D) is the sum of the u-dimensional 
volumes of the projections of B onto the spaces R” obtained by equating 
any n - u coordinates to zero. 

Let us apply this theorem to estimate Z, = Z(B,), where BM is given 
by (7). 

We first note that the projections of B, onto iw” have the form 

B In,,, = i 
y E R”: i YjYy 5 m 

j=l 1 

if r contains no odd component or xs such that rS is odd has been equated 
to zero or 

B” m,u = {y E R”: (2 YjYy)’ + y:Yp 5 m2] 
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otherwise. Here yr, ~2, . . . , y,, 2 0 and pl, p2, . . . , pu are selected 
from ((~1, (~2, . . . , CQ) and (r,, r-2, . . . , ru), respectively. 

Since the sets B,, B,,,, and B$,,, are convex, we can apply the Daven- 
port theorem with h = 1. 

LEMMA 1. The following identities hold: 

(13) V&w) = 
2” ’ r(llP.i) 

r(l + w,) i rI- 
mwu, 

J=] pjyjl”’ 1 

W&J = 
2”-‘B(1/2p,, 1 + (~(1 - llp,)/2) 

ruhm + u, - I/P,,) 

where w, = I$=, llpj and u = 1, 2, . . . , k. 

Proof. Let Z(p,, p2, . . . , p,) be defined by the equations (see 
Gradshteyn and Ryzhik, 1980, p. 621, Eq. 4.635-4) 

We note now that 

V&,u) = I ,, &l&2 . . . dy,, = 2” \ ,, dy,dyz . . . dyn. 
c y, ‘I%5 m c y,?.,hl, 

j=l j=l 
;2Q 

Substituting yj for [j(mlyj)“pj we get 

W,,,) = 2” (fi yJ+~) m”~z(p,, p2, . 
j=l 

and (13) follows easily. 
We now find the volume of B,*.,: 

2 
dyl dy2 

+y;,y+m? 

7 PJ 

. . hi,. 
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Upon making the substitution 

Yj = t,j(mlYj)“pi3 j= 1,2 >. . .1 u - 1, 

and 

y,, = 5 J~(~P80(m/y,,) '/P,< 

we obtain 

where C = 2”m’p,‘(nTzl yj’!“~) mw,,. 
By means of the substitutions t,, = .Y and tj = <,(I - x)“?P!, j = 1, 2, 

.  .  .  )  u, we get 

V(B,z,,,) = CZ(p,, p2, . . . p ,,-I) .i ,; x”‘?,J,+‘( 

= cap,, pz, . . . p,,-I) Hlifp,,, I 

which gives (14). This completes the proof. n 

1 - ,~)h-lh,lqx 

+ (w, - 1/p,,m 

As an immediate consequence of Lemma I we have the following coroi- 
laries. 

COROLLARY 1. The volume V,,, of the set B,,, is given by the equation 

V,, = if r contains no odd component, 

\ ij-r, is odd. 

COROLLARY 2. The sums V,,(B,,,), II = 1, . . , k - I, of the u- 
dimensional volumes of the projections of B,, onto the spaces obtained b) 
equating any n - u coordinates to zero satisfy the equation 
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k-l 

1;~~ m-w c V,(B,) = 0 11=l 

We are now in a position to prove the main result of this section. 

LEMMA 2. The following equation holds 

lim $ = ( ifr contains no odd component, 
m-2 

2’-‘B( 1/2r,, I + (o - l/r,,)/2) h r( l/,2) 
T(llr,,)r(l + 0 - I/r.,) jL, rpi 1 

\ if r,, is odd. 

Proof. By Corollary I it is enough to show that 

(13 

Using the Davenport theorem and Corollary 2, we get 

II,, - V,,J = o(m*‘> as m -+ +=. 

This result taken together with Corollary 1 yield (15). The proof is com- 
plete. l 
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