Approximation of Smooth Periodic Functions in Several Variables

Marek Kowalski*
Department of Mathematics, 233 Widtsoe Building, University of Utah, Salt Lake City, Utah 84112

AND

Waldemar Sielski

UNIDO, Industrial Co-operation and Investment, Promotion Service, 00950 Warsaw, Stawki 2, Poland

Given the k-tuples

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{R}^{k} \quad \text { and } \quad \mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{k}\right) \in \mathbb{N}^{k},
$$

let $\omega, \bar{W}_{2}[0,2 \pi]$, and $\mathbf{J}_{0}=\mathbf{J}_{0}(\mathbf{a}, \mathbf{r})$ be defined by

$$
\omega=\sum_{j=1}^{k} 1 / r_{j}, \quad \tilde{W}_{2}^{r}[0,2 \pi]
$$

$=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{C}: f\right.$ is 2π periodic w.r.t. each variable $x_{j}, \frac{\delta^{\prime j}}{\delta_{x_{j}}^{j}} f$ exists a.e. and belongs to $\left.L_{2}=L_{2}([0,2 \pi])\right\}$,

$$
\mathbf{J}_{0}=\left\{f \in \bar{W}_{2}^{[}[0,2 \pi]:\|T f\| \leq 1\right\},
$$

where $\mathbf{T}=\mathbf{T}(\mathbf{a}, \mathbf{r})$ is a differential operator of the form

$$
\mathbf{T} f=\sum_{j=1}^{k} a_{j} \frac{\delta^{\prime}}{\delta_{x_{j}}^{\prime \prime}} f
$$

and $\|\cdot\|$ is the norm in L_{2}. This paper deals with optimal approximation of func-

[^0]tions f from the class \mathbf{J}_{0} by algorithms ϕ whose sole knowledge about f consists of the n-tuples
$$
N_{n}(f)=\left(\mathbf{L}_{1}(f), \mathbf{L}_{2}(f), \ldots, \mathbf{L}_{n}(f)\right),
$$
where adaptive choice of the linear functionals $\mathbf{L}_{j}: L_{2} \rightarrow \mathbb{C}$ is allowed. We define the best approximation rate $R(n)=R\left(n, \mathbf{J}_{0}, L_{2}\right)$ by
$$
R(n)=\inf _{N_{n}, \phi, N_{n}\left(\mathbf{I}_{(}\right) \rightarrow L_{2}} \sup _{f \in \mathbf{I}_{0}}\left|f-\phi\left(N_{n}(f)\right)\right|
$$
and prove that $R(n)=\theta\left(n^{-1 / \omega}\right)$ as $n \rightarrow+\infty$ if the following condition is satisfied:
r contains at most one odd component; and
\[

\operatorname{sign} a_{j} $$
\begin{cases}\neq 0 & \text { if } r_{j} \text { is odd } \\ =u & \text { if } r_{j} \text { is a multiple of } 4 \\ =-u & \text { otherwise, } \forall_{j}\end{cases}
$$
\]

where $u= \pm 1$. Moreover we obtain the limit $\lim _{n \rightarrow+x} n^{1 / \omega} R(n)$. We also prove that when this condition does not hold, then, even if $R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)$ is finite, an arbitrary small perturbation of a might lead to a class $\boldsymbol{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ in which the operator $\mathbf{T}^{\prime}=\mathbf{T}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ is such that dim $\operatorname{ker} \mathbf{T}^{\prime}=+\infty$. Then $R\left(n, \mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right), L_{2}\right)=+\infty$ and no finite error approximation based on N_{n} would be possible. © 1988 Academic Press, Inc.

1. Introduction

This paper deals with approximation of smooth periodic functions in k variables. We list some results which are relevant to this topic.
Let ξ_{1}, ξ_{2}, \ldots be an orthonormal basis of an infinite dimensional separable Hilbert space H, i.e., $\left(\xi_{j}, \xi_{\ell}\right)=\delta_{j \ell}$, where $\delta_{j \ell}$ is the Kronecker delta. Given a sequence of complex numbers $\left\{\beta_{j}\right\}_{j \in \mathbb{N}}$ such that

$$
\left|\beta_{j}\right|<\left|\beta_{j+1}\right|, \forall_{j \in \mathbb{A}} \quad \text { and } \quad \lim _{j \rightarrow+\infty}\left|\beta_{j}\right|>0
$$

let us define

$$
J_{0}=\left\{f \in H:\|T f\|=\left(\sum_{j=1}^{\times}\left|\beta_{j}\left(f, \xi_{j}\right)\right|^{2}\right)^{1 / 2} \leq 1\right\},
$$

where

$$
T f=\sum_{j=1}^{\infty} \beta_{j}\left(f, \xi_{j}\right) \xi_{j}
$$

and $\|\cdot\|=(\cdot, \cdot)^{1 / 2}$ is the norm in H.

Suppose we wish to approximate any $f \in J_{0}$ as closely as possible from a knowledge of the n-tuples $N_{n}^{a}(f)$ of the form

$$
N_{n}^{a}(f)=\left(\mathbf{L}_{1}(f), \ldots, \mathbf{L}_{n}(f)\right)
$$

where adaptive choice of the linear functions $\mathbf{L}_{j}: H \rightarrow \mathbb{C}$ is allowed, i.e.,

$$
\mathbf{L}_{j}=\mathbf{L}_{j}\left(\mathbf{L}_{1}(f), \mathbf{L}_{2}(f), \ldots, \mathbf{L}_{j-1}(f)\right), \quad j=2,3, \ldots, n
$$

That is, we are looking for information operator N_{n}^{a} and a mapping (algorithm) $\phi: N_{n}^{a}\left(J_{0}\right) \rightarrow H$ which together minimize the quantity

$$
e\left(\phi ; N_{n}^{a}\right)=\sup _{f \in J_{0}}\left\|f-\phi\left(N_{n}(f)\right)\right\|
$$

Let us define the best approximation rate $R(n)=R\left(n, J_{0}, L_{2}\right)$ by

$$
\begin{equation*}
R(n)=\inf _{N_{n}^{u}, \phi: N_{n}^{u}\left(J_{n}\right) \rightarrow H} e\left(\phi ; N_{n}^{a}\right) \tag{1}
\end{equation*}
$$

It turns out that (sec Traub and Woźniakowski, 1980, Chap. 6):
(i) The infimum in (1) is achieved by the nonadaptive information operator

$$
N_{n}^{\text {opt }}: N_{n}^{\text {opt }}(f)=\left(\left(f, \xi_{1}\right),\left(f, \xi_{2}\right), \ldots,\left(f, \xi_{n}\right)\right)
$$

and the linear algorithm

$$
\phi^{\mathrm{opt}}: \quad \phi^{\mathrm{opt}}\left(N_{n}^{\mathrm{opt}}(f)\right)=\sum_{j=1}^{n}\left(f, \xi_{j}\right) \xi_{j}
$$

(ii) The best approximation rate is

$$
R(n)=1 /\left|\beta_{n+3}\right|
$$

(iii) Moreover,

$$
R(n)=d^{n}\left(J_{0}, H\right)=\lambda_{n}\left(J_{0}, H\right)
$$

where $d^{n}\left(J_{0}, H\right)$ and $\lambda_{n}\left(J_{0}, H\right)$ are Gelfand's n-width of J_{0} and Kolmogorov's linear n-width of J_{0}, respectively; that is,

$$
d^{n}\left(J_{0}, H\right)=\inf _{\substack{A^{n} \subset H \\ \operatorname{codim} A^{n} \leq n}} \sup _{x \in J_{0} \cap A^{n}}\|x\|
$$

and

$$
\lambda_{n}\left(J_{0}, H\right)=\inf _{\substack{A_{n} \subset H \\ \operatorname{dim}_{n} A_{n} \leqslant n}} \inf _{\substack{A: H \rightarrow H \text { linin op. }) \\ A A_{0} \subset A_{n}}} \sup _{x \in J_{0}}\|x-A x\| .
$$

Gelfand's and Kolmogorov's widths play an important role in approximation theory (see Karnejčuk, 1976; Tichomirov, 1976; Babenko, 1979; Pinkus, 1985) and, because of (iii) and other much more general results, in information based complexity (see Traub and Woźniakowski [1980]).

We choose as our space H, the space L_{2} of square integrable functions $g:[0,2 \pi]^{k} \rightarrow \mathbb{C}$. Given k-tuples

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{R}^{k}
$$

and

$$
\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{k}\right) \in \mathbb{N}^{k}
$$

let us define the Sobalev space $\tilde{W}_{2}^{r}[0,2 \pi]$, the differential operator $\mathbf{T}=$ $\mathbf{T}(\mathbf{a}, \mathbf{r})$, the class $\mathbf{J}_{0}=\mathbf{J}_{0}(\mathbf{a}, \mathbf{r})$, and the number $\omega=\omega(\mathbf{r})$ by

$$
\tilde{W}_{2}^{\mathrm{r}}[0,2 \pi]
$$

$=\left\{f: \mathbb{R}^{h} \rightarrow \mathbb{C}: f\right.$ is 2π periodic w.r.t. each variable $x_{j}, \frac{\delta^{r_{j}}}{\delta_{x_{j}}^{r_{j}}} f$ exists a.e. and belongs to $\left.L_{2}\right\}$,

$$
\begin{gather*}
\mathbf{T} f=\sum_{j=1}^{k} a_{j} \frac{\delta^{r_{j}}}{\delta_{x_{i}}^{j_{j}}} f, \tag{2}\\
\mathbf{J}_{0}=\left\{f \in \tilde{W}_{2}^{r}[0,2 \pi]:\|\mathbf{T} f\| \leq 1\right\},
\end{gather*}
$$

and

$$
\omega=\sum_{j=1}^{k} 1 / r_{j} .
$$

Using the results mentioned above and the Davenport theorem on integer coordinate points in multidimensional bodies we prove that

$$
R\left(n, \mathbf{J}_{0}, L_{2}\right)=d^{n}\left(\mathbf{J}_{0}, L_{2}\right)=\lambda_{n}\left(\mathbf{J}_{0}, L_{2}\right)=\theta\left(n^{-1 / \omega}\right) \quad \text { as } n \rightarrow+\infty
$$

if \mathbf{a} and \mathbf{r} satisfy the following condition:

$$
\begin{align*}
& \mathbf{r} \text { contains at most one odd component; and } \\
& \operatorname{sign} a_{j} \begin{cases}\neq 0 & \text { if } r_{j} \text { is odd } \\
=u & \text { if } r_{j} \text { is a multiple of } 4, \\
=-u & \text { otherwise, } \forall_{j},\end{cases} \tag{C}
\end{align*}
$$

where $u= \pm 1$. Moreover, we obtain the limit $\lim _{n \rightarrow+x} n^{1 / \omega} R\left(n, J_{0}, L_{2}\right)$.
So, when (C) holds, the asymptotics of $d^{n}\left(\mathbf{J}_{0}, L_{2}\right)$ and $\lambda_{n}\left(\mathbf{J}_{0}, L_{2}\right)$ coincide with the asymptotics of Gelfand's and Kolmogorov's n-widths of some other classes of smooth multivariate functions (see Babenko, 1977).

If (\mathbf{C}) is not satisfied, the nature of the results changes. Namely, there exists ν in $\{1,2, \ldots, k\}$ such that for any $\varepsilon>0$ there is a_{ν}^{\prime} satisfying

$$
\left|a_{\nu}-a_{\nu}^{\prime}\right| \leq \varepsilon \quad \text { and } \quad R\left(n, \mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right), L_{2}\right)=+\infty, \forall_{n}
$$

where

$$
\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{\nu-1}, a_{\nu}^{\prime}, a_{\nu+1}, \ldots, a_{k}\right)
$$

In other words, even if $R\left(n, \mathbf{J}_{0},(\mathbf{a}, \mathbf{r}), L_{2}\right)$ is finite, an arbitrary small perturbation of a might lead to a class $\mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ in which the operator $\mathbf{T}^{\prime}=$ $\mathbf{T}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ is such that $\operatorname{dim} \operatorname{ker} \mathbf{T}^{\prime}=+\infty$, so no finite error approximation based on N_{n} would be possible (see Traub and Woźniakowski, 1980, Chap. 2).

In Section 2 we shall give a more precise formulation of our results.

2. Asymptotics

In the following theorem Γ and B stand for gamma and beta functions, respectively.

Theorem 1. Given any positive integer n and given arbitrary n-tuples $\mathbf{a} \in \mathbb{R}^{k}, r \in \mathbb{N}^{k}$ we have

$$
R\left(\boldsymbol{n}, \mathbf{J}_{0},(\mathbf{a}, \mathbf{r}), L_{2}\right)=d^{n}\left(\mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)=\lambda_{n}\left(\mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)
$$

Moreover, if \mathbf{a} and \mathbf{r} satisfy the condition (\mathbf{C}), then

$$
\begin{gather*}
\quad \lim _{n \rightarrow+\infty} n^{1 / \omega} R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}) \mathbf{L}_{2}\right) \\
=\left\{\begin{array}{l}
{\left[\frac{2^{k}}{\Gamma(1+\omega)} \prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j}\left|a_{j}\right|^{1 / r_{j}}}\right]^{1 / \omega}} \\
\text { when } \mathbf{r} \text { contains no odd component, } \\
{\left[\frac{2^{k-1} B\left(1 / 2 r_{s}, 1+\left(\omega-1 / r_{s}\right) / 2\right)}{\Gamma\left(1 / r_{s}\right) \Gamma\left(1+\omega-1 / r_{s}\right)} \prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j}\left|a_{j}\right|^{1 / r}}\right]^{1 / \omega}} \\
\text { when } r_{s} \text { is odd, }
\end{array}\right. \tag{3}
\end{gather*}
$$

otherwise either

$$
R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)=+\infty, \quad \forall_{n \in \mathbb{N}}
$$

or else there exists ν in $\{1,2, \ldots, k\}$ such that for any positive ε there is a_{ν}^{\prime} satisfying

$$
\left|a_{\nu}-a_{\nu}^{\prime}\right| \leq \varepsilon \quad \text { and } \quad R\left(n, \mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right), L_{2}\right)=+\infty, \forall_{n \in \mathbb{N}}
$$

where

$$
\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{\nu-1}, a_{\nu}^{\prime}, a_{\nu+1}, \ldots, a_{k}\right)
$$

Proof. The first statement is a consequence of general results on approximation in Hilbert spaces (see Traub and Woźniakowski, 1980, Chaps. 2 and 3).

Let us denote by \mathbf{Z} the set of all integers.
Given a k-tuple $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in \mathbf{Z}^{k}$ we define the function $e_{\mathrm{t}} \in$ $\tilde{W}_{2}^{\mathrm{r}}[0,2 \pi]$ by the equation

$$
e_{\mathbf{t}}(\mathbf{x})=(2 \pi)^{-k / 2} \exp (\dot{\ell}(\mathbf{x}, t\rangle)
$$

where $\dot{\ell}=\sqrt{-1}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in[0,2 \pi]^{k}$, and $\langle\mathbf{x}, \mathbf{t}\rangle=\sum_{j=1}^{k} x_{i} t_{j}$.
The set $\left\{e_{1}\right\}_{t \in \mathbf{Z}^{\star}}$ is an orthonormal basis of L_{2} and for $\mathbf{T}=\mathbf{T}(\mathbf{a}, \mathbf{r})$ we have

$$
\mathbf{T} e_{\mathbf{t}}=b_{1} e_{t}
$$

where

$$
\begin{equation*}
b_{\mathbf{t}}=\sum_{j=1}^{k} a_{j}\left(\dot{\ell}_{t_{j}}\right)^{r_{j}} \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathbf{J}_{0}=\mathbf{J}_{0}(\mathbf{a}, \mathbf{r})=\left\{f \in L_{2}: \sum_{\mathbf{t} \in \mathbf{Z}^{k}}\left|b_{\mathbf{t}}\left(f, e_{\mathbf{t}}\right)^{2}\right| \leq 1\right\} \tag{5}
\end{equation*}
$$

Let us suppose that the tuples a and \mathbf{r} satisfy the condition (\mathbf{C}). Then

$$
\left|b_{t}\right|=\left\{\begin{array}{l}
\sum_{j=1}^{k} \alpha_{j} t_{j}^{r_{j}} \\
\text { if } \mathbf{r} \text { contains no odd component } \\
{\left[\left(\sum_{j=1 . j \neq s}^{k} \alpha_{j} t_{j}^{t_{j}}\right)^{2}+\left(\alpha_{s} t_{s}^{r_{s}^{\prime}}\right)^{2}\right]^{1 / 2}} \\
\text { if } r_{s} \text { is odd, }
\end{array}\right.
$$

where $\alpha_{j}=\left|a_{j}\right|>0$.
Since

$$
\lim _{\sum_{i=1}^{n}\left|t_{i}\right| \rightarrow+x}\left|b_{i}\right|=+\infty
$$

for some numbers β_{j} such that

$$
\left|\beta_{j}\right| \leq\left|\beta_{j+1}\right|, \quad \forall_{j \in \mathbb{A}}
$$

we have

$$
\begin{equation*}
\left\{b_{t}\right\}_{\mathbf{t} \in \mathbf{Z}^{\kappa}}=\left\{\beta_{j}\right\}_{j \in \mathbb{N}} . \tag{6}
\end{equation*}
$$

Corresponding to a fixes m in \mathbb{N}, let I_{m} be the number of k-tuples $\mathbf{t} \in \mathbf{Z}^{k}$ such that $\left|b_{\mathbf{t}}\right| \leq m$, i.e., I_{m} is the number of integer coordinate points of the convex body

$$
B_{m}=\left\{x \in \mathbb{R}^{k}:\left\{\begin{array}{l}
\sum_{j-1}^{k} \alpha_{j} x_{j}^{r_{j}} \leq m \tag{7}\\
\text { if } \mathbf{r} \text { contains no odd component }\} \\
\left(\sum_{j=1, j \neq s}^{k} \alpha_{j} x_{j}^{r}\right)^{2}+\alpha_{s}^{2} x_{s}^{2 r_{s}} \leq m^{2} \\
\text { if } r_{s} \text { is odd. }
\end{array}\right.\right.
$$

We shall prove in the text section that

$$
\lim _{m \rightarrow x} \frac{I_{m}}{m_{\omega}}=\gamma:=\left\{\begin{array}{l}
\frac{2^{k}}{\Gamma(\omega+1)} \prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j} \alpha_{j}^{1 / r_{j}}} \tag{8}\\
\text { if } \mathbf{r} \text { contains no odd component } \\
\frac{2^{k-1} B\left(1 / 2 r_{s}, 1+\left(\omega-1 / r_{s}\right) / 2\right)}{\Gamma\left(1 / r_{s}\right) \Gamma\left(\omega-1 / r_{s}+1\right)} \prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j} \alpha_{j}^{1 / r_{j}}} \\
\text { if } r_{s} \text { is odd }
\end{array}\right.
$$

(see Lemma 2, Section 3).
The definition of I_{m} implies that

$$
\lim _{m \rightarrow+\infty} \frac{\left|\beta_{I_{m}}\right|}{m}=1
$$

therefore we get

$$
\lim _{m \rightarrow+\infty}\left|\beta_{m}\right| m^{-1 / \omega}=\gamma^{-1 / \omega}
$$

This identity taken taken together with (ii) yields (3).
Let us suppose now that a and \mathbf{r} do not satisfy the condition (C). Then

$$
a_{s}=0 \quad \text { for some } s
$$

or else from (4) we have

$$
\left\{\left|\left|a_{u}\right| x^{r_{u}}-\left|a_{\nu}\right| y^{r_{u}}\right|: x, y \in \mathbb{N}\right\} \subset\left\{\left|b_{t}\right|\right\}_{\in \in \mathbf{Z}^{k}}
$$

with some u and ν such that $0<\left|a_{\nu}\right| \leq\left|a_{u}\right|$.
In the first case, when $a_{s}=0$ for some s, we have

$$
e_{\left(0, \ldots, 0, t_{s}, 0, \ldots, 0\right)} \in \mathbf{J}_{0} \quad \text { and } \quad b_{\left(0, \ldots, 0, t_{s}, 0, \ldots, 0\right)}=0, \forall_{t_{s} \in \mathbf{Z}}
$$

Consequently,

$$
\operatorname{dim} \operatorname{ker} \mathbf{T}=+\infty
$$

which yields

$$
R\left(n, \mathbf{J}_{0}, L_{2}\right)=+\infty
$$

(see Traub and Woźniakowski, 1980, Chap. 2).
In the second case, we set $\lambda=a_{\nu} / a_{u \prime}$. Then

$$
\begin{equation*}
|\lambda|^{\mid / r_{u}}=\sum_{j=1}^{\infty} \lambda_{j} 2^{-j} \tag{9}
\end{equation*}
$$

for some $\lambda_{i} \in\{0,1\}$. Let us note now that for arbitrary $I, m \in \mathbb{N}$, where $l>$ m, the numbers

$$
x=2^{l_{v}} \sum_{j=1}^{m} \lambda_{j} 2^{-j} \quad \text { and } \quad y=2^{t_{u}}
$$

satisfy the equation

$$
\left|a_{u 1}\right| x^{r_{u}}-\left|a_{\nu}^{\prime}\right| y^{r_{v}}=0,
$$

where

$$
\begin{equation*}
a_{\nu}^{\prime}=\left(\operatorname{sign} a_{\nu}\right)\left(\sum_{j=1}^{m} \lambda_{j} 2^{-j}\right)^{r_{u}}\left|\cdot a_{u l}\right| . \tag{10}
\end{equation*}
$$

Hence, upon replacing a in (2) with

$$
\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{\nu-1}, a_{\nu}^{\prime}, a_{\nu+1}, \ldots, a_{k}\right)
$$

we obtain the class $\mathbf{J}_{0}^{\prime}=\mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ in which the operator $\mathbf{T}^{\prime}=\mathbf{T}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ is such that $\mathbf{T}^{\prime} e_{\mathbf{t}}=0$ for any \mathbf{t} satisfying $t_{j}=0$ if $j \neq u, \nu$. Since the functions $e_{\mathbf{1}}$ belong to J_{0} we have

$$
\operatorname{dim} \operatorname{ker} \mathbf{T}^{\prime}=+\infty
$$

Consequently,

$$
R\left(n, \mathbf{J}_{0}^{\prime}, L_{2}\right)=+\infty .
$$

Finally, we note by (9) and (10) that $a_{\nu}^{\prime} \rightarrow a_{\nu}$ as $m \rightarrow+\infty$. This completes the proof.

As an immediate consequence of Theorem 1 we have the following corollary.

Corollary. If $\mathbf{a} \in \mathbb{R}^{k}$ and $\mathbf{r} \in \mathbb{N}^{k}$ satisfy the condition (\mathbf{C}), then

$$
R(n)=R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)=\theta\left(n^{-1 / \omega}\right) \quad \text { as } n \rightarrow+\infty .
$$

To illustrate the dependence of this result on the dimension k let us consider the following example.

Example 1. Let \mathbf{a} and \mathbf{r} be defined by the equations

$$
a_{j}=1 \quad \text { and } \quad r_{j}=2, \quad \forall_{j=1,2, \ldots, k}
$$

That is, \mathbf{T} in (2) is the k-dimensional Laplace operator.
Since the condition (\mathbf{C}) holds and $\omega=k / 2$, we get

$$
R(n)=\theta\left(n^{-2 / k}\right) \quad \text { as } n \rightarrow+\infty .
$$

Thus, if k is large, $R(n)$ converges to zero very slowly.
From the results of Traub and Woźniakowski (1980, Chap. 6), it follows that our approximation problem is convergent, i.e.,

$$
\lim _{n \rightarrow+\infty} R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)=0
$$

if and only if $+\infty$ is the unique limit point of the set

$$
S=\left\{\mid b_{\mathbf{t}}\right\}_{\mathbf{t} \in \mathbf{Z}^{k}}
$$

where numbers b_{t} are given by (4).
Let us suppose now that the tuples a and \mathbf{r} do not satisfy the condition (C). Hence, by Theorem 1, an arbitrary small perturbation of components a_{j} might lead to a class $\mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right)$ such that $R\left(n, \mathbf{J}_{0}\left(\mathbf{a}^{\prime}, \mathbf{r}\right), L_{2}\right)=+\infty$ for any n. The following examples show that the convergency and the divergency of the original approximation problem for the class $\mathbf{J}_{0}(\mathbf{a}, \mathbf{r})$ are both possible.

Example 2. Let $k=2, \mathbf{a}=(\alpha,-\beta)$, and $\mathbf{r}=(m, m)$, where $\alpha, \beta, m \in$ $\mathbb{N}, m \geq 3$, and the binary form

$$
F(x, y)=\alpha x^{m}-\beta y^{m}
$$

is irreducible over the field of rational numbers. It is easy to note that (C) does not hold and

$$
S=\{|F(x, y)|: x, y \in \mathbf{Z}\}
$$

By the theorem of Thue (1909), for any $c \in \mathbb{N}$ the inequality

$$
|\Gamma(x, y)| \leq c
$$

has at most finitely many integer solutions. Of course, the number of such solutions goes to infinity with c. This implies that the unique limit point of the set S is $+\infty$. Consequently,

$$
\lim _{n \rightarrow+\infty} R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right)=0
$$

Example 3. Let $k=2, \mathbf{a}=(1,-D)$, and $\mathbf{r}=(2,2)$, where

$$
D \in \mathbb{N} \quad \text { and } \quad D \neq m^{2}, \quad \forall_{m \in \mathbb{N}} .
$$

Then, (C) does not hold and

$$
S=\left\{\left|x^{2}-D y^{2}\right|, x, y \in \mathbf{Z}\right\}
$$

It is known that the equation $x^{2}-D y^{2}=1$ has infinitely many integer solutions (see Sierpiński, 1968, Chap. II, Sect. 17). Thus, unity is the limit point of S and consequently

$$
\lim _{n \rightarrow+\infty} R\left(n, \mathbf{J}_{0}(\mathbf{a}, \mathbf{r}), L_{2}\right) \neq 0
$$

We close this section by finding asymptotics of the ε-complexity of the approximation problem for the class $\mathbf{J}_{0}(\mathbf{a}, \mathbf{r})$, where $\mathbf{a} \in \mathbb{R}^{k}$ and $\mathbf{r} \in \mathbb{N}^{k}$ satisfy the condition (C).

Given $\varepsilon>0$, let $m(\varepsilon)$ denote the minimal number of linear functionals whose evaluations allow us to determine a set of functions $\left\{a_{\varepsilon, f}\right\}_{f \in \mathbf{J}_{0}(\mathbf{a}, \mathbf{r})}$ such that

$$
\sup _{f \in \mathbb{J}_{0}(\mathrm{a}, \mathrm{r})}\left\|f-a_{\varepsilon, f}\right\|<\varepsilon .
$$

We call $a_{\varepsilon, f}(\mathbf{x})$ an ε-approximation to $f(\mathbf{x}), \mathbf{x} \in[0,2 \pi]^{k}$.

Let $\operatorname{comp}(\varepsilon)$ be the minimal computing cost (complexity) of $a_{\varepsilon, f}(\mathbf{x})$. Here we assume that the cost of the arithmetic operations $(-,-, \times, /)$ and the cost of any linear functional evaluation are taken as unity and \mathbf{c}, respectively.

We are now in a position to prove the following theorem.
Theorem 2. Let γ be given by (8). Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{-}} m(\varepsilon) \varepsilon^{\omega}=\gamma \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{comp}(\varepsilon)=\theta\left(\mathbf{c} / \varepsilon^{\omega}\right) \quad \text { as } \varepsilon \rightarrow 0^{+} \tag{12}
\end{equation*}
$$

Proof. We omit the proof of the identity (11), since (11) is an immediate consequence of Theorem 1 .

Let $\varepsilon>0$ and $x \in[0,2 \pi]^{k}$ be given. From (5), (6), and the statements (i) and (ii) of the introductory section it is seen that to get an ε-approximation $a_{\varepsilon, \mathrm{f}}(\mathbf{x})$ to $f(\mathbf{x})$ for any $f \in \mathbf{J}_{0}(\mathbf{a}, \mathbf{r})$ one can proceed as follows.

1. Precompute the subset $S_{0}(\varepsilon) \in \mathbf{Z}^{k}$ and the k-tuple $\mathbf{t}(\varepsilon)$ such that

$$
\left|b_{\mathbf{t}}\right| \leq \varepsilon, \forall_{\mathbf{t} \in S_{0}(\varepsilon)}, \quad\left|b_{\mathbf{t}}\right|>\varepsilon, \forall_{1 \in \mathbf{Z}^{\wedge} \backslash S_{0}(\varepsilon)}
$$

and

$$
\left|b_{t(s)}\right|=\min _{t \in \mathbf{Z}^{\Uparrow} S_{0}(\varepsilon)}\left|b_{\mathbf{t}}\right| .
$$

2. Define $S(\varepsilon)=S_{0}(\varepsilon) \cup\{\mathbf{t}(\varepsilon)\}$ and note that card $S(\varepsilon)=m(\varepsilon)$, i.e., $S(\varepsilon)$ contains exactly $m(\varepsilon)$ elements.
3. Precompute $e_{\mathbf{t}}(x)$ for all $\mathbf{t} \in S(\varepsilon)$.
4. Put

$$
a_{\varepsilon, f}(\mathbf{x})=\sum_{\mathbf{t} \in S(\varepsilon)}\left(f, e_{\mathbf{t}}\right) e_{\mathbf{t}}(\mathbf{x})
$$

Thus, neglecting cost of precomputations, the computing cost of $a_{\varepsilon, f,}(\mathbf{x})$ is $(\mathbf{c}+2)$ card $S(\varepsilon)-1=(c+2) m(\varepsilon)-1$. This shows that

$$
\operatorname{comp}(\varepsilon) \leq(\mathbf{c}+2) m(\varepsilon)-1
$$

By the obvious inequality $\operatorname{comp}(\varepsilon) \geq \mathbf{c m}(\varepsilon)$ and (11) we finally get

$$
\operatorname{comp}(\varepsilon)=\theta\left(\mathbf{c} / \varepsilon^{\omega}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

This proves (12) and completes the proof.

3. Integer Points of \boldsymbol{B}_{m}

Let $I(\mathbb{B})$ denote the number of integer coordinate points in a subset \mathbb{B} of \mathbb{R}^{n}.

The results of this section are based on the following theorem of Davenport [1951].

Theorem 3. Let \mathbb{B} be a closed bounded subset of \mathbb{R}^{n} such that
(a) For any line \mathscr{L} which is parallel to one of the coordinate axes the intersection $\mathscr{L} \cap \mathbb{B}$ consists of, at most, h intervals.
(b) Property (a) holds for any of the u-dimensional regions obtained by projecting \mathbb{B} onto the space \mathbb{R}^{u} defined by equating arbitrary $n-u$ coordinates to zero.
Then

$$
|I(\mathbb{B})-V(\mathbb{B})| \leq \sum_{u=1}^{n-1} h^{n-u} V_{u}(\mathbb{B})
$$

where $V(\mathbb{B})$ is the volume of \mathbb{B} and $V_{u}(\mathbb{B})$ is the sum of the u-dimensional volumes of the projections of \mathbb{B} onto the spaces \mathbb{R}^{u} obtained by equating any $n-u$ coordinates to zero.

Let us apply this theorem to estimate $I_{m}=I\left(B_{m}\right)$, where B_{M} is given by (7).

We first note that the projections of B_{m} onto \mathbb{R}^{u} have the form

$$
B_{m, u}=\left\{\mathbf{y} \in \mathbb{R}^{u}: \sum_{j=1}^{u} \gamma_{j} y_{j}^{\rho_{j}} \leq m\right\}
$$

if \mathbf{r} contains no odd component or x_{s} such that r_{s} is odd has been equated to zero or

$$
B_{m, u}^{*}=\left\{\mathbf{y} \in \mathbb{R}^{u}:\left(\sum_{j=1}^{u-1} \gamma_{j} y_{j}^{\rho_{j}}\right)^{2}+\gamma_{u}^{2} y_{u}^{2 \rho_{u}} \leq m^{2}\right\}
$$

otherwise. Here $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \geq 0$ and $\rho_{1}, \rho_{2}, \ldots, \rho_{u}$ are selected from ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$) and ($r_{1}, r_{2}, \ldots, r_{u}$), respectively.

Since the sets $\boldsymbol{B}_{m}, \boldsymbol{B}_{m, u}$, and $\boldsymbol{B}_{m, u}^{*}$ are convex, we can apply the Davenport theorem with $h=1$.

Lemma 1. The following identities hold:

$$
\begin{gather*}
V\left(B_{m, u}\right)=\frac{2^{u}}{\Gamma\left(1+\omega_{u}\right)}\left(\prod_{j=1}^{u} \frac{\Gamma\left(1 / \rho_{j}\right)}{\rho_{j} \gamma_{j}^{1 / \rho_{j}}}\right) m^{\omega_{u}}, \tag{13}\\
V\left(B_{m, u}^{*}\right)=\frac{2^{u-1} B\left(1 / 2 \rho_{u}, 1+\left(\omega_{u}-1 / \rho_{u}\right) / 2\right)}{\Gamma\left(1 / \rho_{u} u\right) \Gamma\left(1+\omega_{u}-1 / \rho_{u}\right)}\left(\prod_{j=1}^{u} \frac{\Gamma\left(1 / \rho_{j}\right)}{\rho_{j} \gamma_{j}^{1 / \rho_{j}}}\right) m^{\omega_{u}}, \tag{14}
\end{gather*}
$$

where $\omega_{u}=\sum_{j=1}^{u} 1 / \rho_{j}$ and $u=1,2, \ldots, k$.
Proof. Let $I\left(\rho_{1}, \rho_{2}, \ldots, \rho_{s}\right)$ be defined by the equations (see Gradshteyn and Ryzhik, 1980, p. 621, Eq. 4.635-4)

$$
I\left(\rho_{1}, \rho_{2}, \ldots, \rho_{s}\right)=\int_{\substack{s \\ \sum_{j=1}, \xi_{j} \leq 1 \\ \xi_{j}>0}} d \xi_{1} d \xi_{2} \ldots d \xi_{s}=\frac{1}{\Gamma\left(1+\omega_{s}\right)} \prod_{j=1}^{s} \frac{\Gamma\left(1 / \rho_{j}\right)}{\rho_{j}} .
$$

We note now that

$$
V\left(\boldsymbol{B}_{m, u}\right)=\int_{\sum_{j=1}^{u} \gamma_{1} y_{j}^{p_{i} \leq m}} d y_{1} d y_{2} \ldots d y_{u}=2^{u} \int_{\substack{u \\ \sum_{j=1}^{u} \gamma y_{j} j_{j}^{\prime /} \leq m \\ y_{j} \geq 0}} d y_{1} d y_{2} \ldots d y_{n} .
$$

Substituting y_{j} for $\xi_{j}\left(m / \gamma_{j}\right)^{1 / p_{j}}$ we get

$$
V\left(B_{m, u}\right)=2^{u}\left(\prod_{j=1}^{u} \gamma_{j}^{-1 / \rho_{j}}\right) m^{u \mu I} I\left(\rho_{1}, \rho_{2}, \ldots, \rho_{u}\right)
$$

and (13) follows easily.
We now find the volume of $B_{m, u}^{*}$:

$$
\begin{aligned}
& V\left(B_{m, u}^{*}\right)=\int_{\left(\sum_{j=1}^{u-1} \gamma_{y} y_{j}^{\rho_{j}}\right)^{2}+\gamma_{u}^{2} \sum_{j}^{2 p_{u} \leq m^{2}}} d y_{1} d y_{2} \ldots d y_{u} \\
& =2^{u} \int_{\left(\sum_{\substack{j=1 \\
y_{j} \geq 0}}^{n-1} \gamma_{i} y_{j}^{p_{j}}\right)^{2}+\gamma_{u}^{2} y_{u}^{2 p_{u}} \leq m^{2}} d y_{1} d y_{2} \ldots d y_{u} .
\end{aligned}
$$

Upon making the substitution

$$
y_{j}=\xi_{j}\left(m / \gamma_{j}\right)^{1 / \rho_{j}}, \quad j=1,2, \ldots, u-1,
$$

and

$$
y_{u}=\xi_{u}^{1 /\left(2 \rho_{u}\right)}\left(m / \gamma_{u}\right)^{1 / \rho_{u}}
$$

we obtain

$$
\begin{aligned}
& V\left(B_{m, u}^{*}\right)=C \int_{\left(\underset{\substack{j-1 \\
\xi_{i}=0}}{u-1} \xi^{n^{j}}\right)^{2}+\xi_{u}=1} \xi^{1 /\left(2 \rho_{u}\right)-1} d \xi_{1} d \xi_{2} \ldots d \xi_{u}
\end{aligned}
$$

where $C=2^{u-1} \rho_{u}^{-1}\left(\prod_{j=1}^{u} \gamma_{j}^{-1 / \rho_{\nu}}\right) m^{\omega_{u}}$.
By means of the substitutions $\xi_{u}=x$ and $\xi_{j}=\zeta_{j}(1-x)^{1 / 2 p_{s}}, j=1,2$, ..., u, we get

$$
\begin{aligned}
V\left(B_{m . u}^{*}\right) & =C I\left(\rho_{1}, \rho_{2}, \ldots \rho_{u-1}\right) \int_{0}^{1} x^{1 /\left(2 \rho_{u}\right)-1}(1-x)^{\left(\omega_{u}-1 / \rho_{u}\right) / 2} d x \\
& =C I\left(\rho_{1}, \rho_{2}, \ldots \rho_{u-1}\right) B\left(1 / 2 \rho_{u l}, 1+\left(\omega_{u}-1 / \rho_{u}\right) / 2\right)
\end{aligned}
$$

which gives (14). This completes the proof.
As an immediate consequence of Lemma 1 we have the following corollaries.

Corollary 1. The volume V_{m} of the set B_{m} is given by the equation

$$
V_{m}=\left\{\begin{array}{l}
V\left(B_{m, k}\right)=\frac{2^{k}}{\Gamma(1+\omega)}\left(\prod_{j-1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j} \alpha_{j}^{1 / m_{j}}}\right) m^{\omega} \\
\text { if } \mathbf{r} \text { contains no odd component, } \\
V\left(B_{m, k}^{*}\right)=\frac{2^{k-1} B\left(1 / 2 r_{s}, 1+\left(\omega-1 / r_{s}\right) / 2\right)}{\Gamma\left(1 / r_{s}\right) \Gamma\left(1+\omega-1 / r_{s}+1\right)}\left(\prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j} \alpha_{j}^{1 / r_{j}}}\right) m^{\omega} \\
\text { if } \mathbf{r}_{s} \text { is odd. }
\end{array}\right.
$$

Corollary 2. The sums $V_{t \prime}\left(B_{m}\right), u=1, \ldots, k-1$, of the u dimensional volumes of the projections of B_{m} onto the spaces obtained by equating any $n-u$ coordinates to zero satisfy the equation

$$
\lim _{m>+\infty} m^{-\omega} \sum_{u=1}^{k-1} V_{u}\left(B_{m}\right)=0
$$

We are now in a position to prove the main result of this section.
Lemma 2. The following equation holds

$$
\lim _{m \rightarrow \infty} \frac{I_{m}}{m^{\omega}}=\left\{\begin{array}{l}
\frac{2^{k}}{\Gamma(1+\omega)} \prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j} \alpha_{j}^{1 / r_{j}}} \\
\text { if } \mathbf{r} \text { contains no odd component }, \\
\frac{2^{k-1} B\left(1 / 2 r_{s}, 1+\left(\omega-1 / r_{s}\right) / 2\right)}{\Gamma\left(1 / r_{s}\right) \Gamma\left(1+\omega-1 / r_{s}\right)} \prod_{j=1}^{k} \frac{\Gamma\left(1 / r_{j}\right)}{r_{j} \alpha_{j}^{1 / r_{j}}} \\
\text { if } \mathbf{r}_{s} \text { is odd. }
\end{array}\right.
$$

Proof. By Corollary 1 it is enough to show that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{I_{m}}{V_{m}}=1 \tag{15}
\end{equation*}
$$

Using the Davenport theorem and Corollary 2, we get

$$
\left|I_{m}-V_{m}\right|=o\left(m^{\omega}\right) \quad \text { as } m \rightarrow+\infty
$$

This result taken together with Corollary 1 yield (15). The proof is complete.

Acknowledgments

We wish to express our gratitude to Frank Stenger and Henryk Woźniakowski for their valuable suggestions and comments.

References

Barenko, K. I. (1979), "Theoretical Background and Constructing of Computational Algorithms for Mathematical-Physical Problems" (K. I. Babenko, Ed.), Nauka, Moscow. [in Russian]
Davenport, H. (1951), Note on a principle of Lipschitz, J. London Math. Soc. 26, 179-183.
Gradshteyn, I. S., and Ryzhik, I. M. (1980), "Table of Integrals, Series, and Products," corrected and enlarged ed., Academic Press, Orlando/San Diego/New York.

Kornejčuk, N. P. (1976), "Extremal Problems in Approximation Theory," Nauka, Moscow. [in Russian]
Pinkus, A. (1985), " n-Widths in Approximation Theory," Springer-Verlag, Berlin/Heidelberg/New York.
Sierpiński, W. (1964), "Elementary Theory of Numbers," PWN, Warszawa.
Thue, A. (1918), Berechnung aller Losungen gewisser Gleichungen von der Form $a x^{r}-b y^{r}$ $=f$, Vid-Selsk. Skrifter, I. Math.-naturv. KL., Christiania, Nr. 4.
Tikhomirov, V. M. (1976), "Some Problems in Approximation Theory," Moscow State University, Moscow. [in Russian]
Traub, J. F., and Wozniakowski, H. (1980), "General Theory of Optimal Algorithms," Academic Press, New York/London/Toronto.

[^0]: * On leave from the University of Warsaw.

