4,490 research outputs found

    Algorithms and error bounds for multivariate piecewise constant approximation

    Get PDF
    We review the surprisingly rich theory of approximation of functions of many vari- ables by piecewise constants. This covers for example the Sobolev-Poincar´e inequalities, parts of the theory of nonlinear approximation, Haar wavelets and tree approximation, as well as recent results about approximation orders achievable on anisotropic partitions

    A Posteriori Error Control for the Binary Mumford-Shah Model

    Full text link
    The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L2L^2-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.Comment: 18 pages, 7 figures, 1 tabl

    Bayesian nonparametric multivariate convex regression

    Full text link
    In many applications, such as economics, operations research and reinforcement learning, one often needs to estimate a multivariate regression function f subject to a convexity constraint. For example, in sequential decision processes the value of a state under optimal subsequent decisions may be known to be convex or concave. We propose a new Bayesian nonparametric multivariate approach based on characterizing the unknown regression function as the max of a random collection of unknown hyperplanes. This specification induces a prior with large support in a Kullback-Leibler sense on the space of convex functions, while also leading to strong posterior consistency. Although we assume that f is defined over R^p, we show that this model has a convergence rate of log(n)^{-1} n^{-1/(d+2)} under the empirical L2 norm when f actually maps a d dimensional linear subspace to R. We design an efficient reversible jump MCMC algorithm for posterior computation and demonstrate the methods through application to value function approximation

    Formal Verification of Neural Network Controlled Autonomous Systems

    Full text link
    In this paper, we consider the problem of formally verifying the safety of an autonomous robot equipped with a Neural Network (NN) controller that processes LiDAR images to produce control actions. Given a workspace that is characterized by a set of polytopic obstacles, our objective is to compute the set of safe initial conditions such that a robot trajectory starting from these initial conditions is guaranteed to avoid the obstacles. Our approach is to construct a finite state abstraction of the system and use standard reachability analysis over the finite state abstraction to compute the set of the safe initial states. The first technical problem in computing the finite state abstraction is to mathematically model the imaging function that maps the robot position to the LiDAR image. To that end, we introduce the notion of imaging-adapted sets as partitions of the workspace in which the imaging function is guaranteed to be affine. We develop a polynomial-time algorithm to partition the workspace into imaging-adapted sets along with computing the corresponding affine imaging functions. Given this workspace partitioning, a discrete-time linear dynamics of the robot, and a pre-trained NN controller with Rectified Linear Unit (ReLU) nonlinearity, the second technical challenge is to analyze the behavior of the neural network. To that end, we utilize a Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible segments of different ReLUs. SMC solvers then use a Boolean satisfiability solver and a convex programming solver and decompose the problem into smaller subproblems. To accelerate this process, we develop a pre-processing algorithm that could rapidly prune the space feasible ReLU segments. Finally, we demonstrate the efficiency of the proposed algorithms using numerical simulations with increasing complexity of the neural network controller

    Rates of convergence of rho-estimators for sets of densities satisfying shape constraints

    Full text link
    The purpose of this paper is to pursue our study of rho-estimators built from i.i.d. observations that we defined in Baraud et al. (2014). For a \rho-estimator based on some model S (which means that the estimator belongs to S) and a true distribution of the observations that also belongs to S, the risk (with squared Hellinger loss) is bounded by a quantity which can be viewed as a dimension function of the model and is often related to the "metric dimension" of this model, as defined in Birg\'e (2006). This is a minimax point of view and it is well-known that it is pessimistic. Typically, the bound is accurate for most points in the model but may be very pessimistic when the true distribution belongs to some specific part of it. This is the situation that we want to investigate here. For some models, like the set of decreasing densities on [0,1], there exist specific points in the model that we shall call "extremal" and for which the risk is substantially smaller than the typical risk. Moreover, the risk at a non-extremal point of the model can be bounded by the sum of the risk bound at a well-chosen extremal point plus the square of its distance to this point. This implies that if the true density is close enough to an extremal point, the risk at this point may be smaller than the minimax risk on the model and this actually remains true even if the true density does not belong to the model. The result is based on some refined bounds on the suprema of empirical processes that are established in Baraud (2016).Comment: 24 page
    • …
    corecore