7,176 research outputs found

    Independent Sets in Elimination Graphs with a Submodular Objective

    Get PDF
    Maximum weight independent set (MWIS) admits a 1/k-approximation in inductively k-independent graphs [Karhan Akcoglu et al., 2002; Ye and Borodin, 2012] and a 1/(2k)-approximation in k-perfectly orientable graphs [Kammer and Tholey, 2014]. These are a parameterized class of graphs that generalize k-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others [Ye and Borodin, 2012; Kammer and Tholey, 2014]. We consider a generalization of MWIS to a submodular objective. Given a graph G = (V,E) and a non-negative submodular function f: 2^V ? ?_+, the goal is to approximately solve max_{S ? ?_G} f(S) where ?_G is the set of independent sets of G. We obtain an ?(1/k)-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least 1/e(k+1). This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively k-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks

    Independent Sets in Elimination Graphs with a Submodular Objective

    Full text link
    Maximum weight independent set (MWIS) admits a 1k\frac1k-approximation in inductively kk-independent graphs and a 12k\frac{1}{2k}-approximation in kk-perfectly orientable graphs. These are a a parameterized class of graphs that generalize kk-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others. We consider a generalization of MWIS to a submodular objective. Given a graph G=(V,E)G=(V,E) and a non-negative submodular function f:2VR+f: 2^V \rightarrow \mathbb{R}_+, the goal is to approximately solve maxSIGf(S)\max_{S \in \mathcal{I}_G} f(S) where IG\mathcal{I}_G is the set of independent sets of GG. We obtain an Ω(1k)\Omega(\frac1k)-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least 1e(k+1)\frac{1}{e(k+1)}. This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively kk-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.Comment: Extended abstract to appear in Proceedings of APPROX 2023. v2 corrects technical typos in few place

    Dynamic Geometric Independent Set

    Full text link
    We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned dd-dimensional hypercubes. It is known that a maximum independent set of a collection of nn intervals can be found in O(nlogn)O(n\log n) time, while it is already \textsf{NP}-hard for a set of unit squares. Moreover, the problem is inapproximable on many important graph families, but admits a \textsf{PTAS} for a set of arbitrary pseudo-disks. Therefore, a fundamental question in computational geometry is whether it is possible to maintain an approximate maximum independent set in a set of dynamic geometric objects, in truly sublinear time per insertion or deletion. In this work, we answer this question in the affirmative for intervals, squares and hypercubes. First, we show that for intervals a (1+ε)(1+\varepsilon)-approximate maximum independent set can be maintained with logarithmic worst-case update time. This is achieved by maintaining a locally optimal solution using a constant number of constant-size exchanges per update. We then show how our interval structure can be used to design a data structure for maintaining an expected constant factor approximate maximum independent set of axis-aligned squares in the plane, with polylogarithmic amortized update time. Our approach generalizes to dd-dimensional hypercubes, providing a O(4d)O(4^d)-approximation with polylogarithmic update time. Those are the first approximation algorithms for any set of dynamic arbitrary size geometric objects; previous results required bounded size ratios to obtain polylogarithmic update time. Furthermore, it is known that our results for squares (and hypercubes) cannot be improved to a (1+ε)(1+\varepsilon)-approximation with the same update time

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density
    corecore