142,185 research outputs found

    Dynamical entropy in Banach spaces

    Full text link
    We introduce a version of Voiculescu-Brown approximation entropy for isometric automorphisms of Banach spaces and develop within this framework the connection between dynamics and the local theory of Banach spaces discovered by Glasner and Weiss. Our fundamental result concerning this contractive approximation entropy, or CA entropy, characterizes the occurrence of positive values both geometrically and topologically. This leads to various applications; for example, we obtain a geometric description of the topological Pinsker factor and show that a C*-algebra is type I if and only if every multiplier inner *-automorphism has zero CA entropy. We also examine the behaviour of CA entropy under various product constructions and determine its value in many examples, including isometric automorphisms of l_p spaces and noncommutative tensor product shifts.Comment: 33 pages; unified approach to last three sections give

    Beyond Geometry : Towards Fully Realistic Wireless Models

    Full text link
    Signal-strength models of wireless communications capture the gradual fading of signals and the additivity of interference. As such, they are closer to reality than other models. However, nearly all theoretic work in the SINR model depends on the assumption of smooth geometric decay, one that is true in free space but is far off in actual environments. The challenge is to model realistic environments, including walls, obstacles, reflections and anisotropic antennas, without making the models algorithmically impractical or analytically intractable. We present a simple solution that allows the modeling of arbitrary static situations by moving from geometry to arbitrary decay spaces. The complexity of a setting is captured by a metricity parameter Z that indicates how far the decay space is from satisfying the triangular inequality. All results that hold in the SINR model in general metrics carry over to decay spaces, with the resulting time complexity and approximation depending on Z in the same way that the original results depends on the path loss term alpha. For distributed algorithms, that to date have appeared to necessarily depend on the planarity, we indicate how they can be adapted to arbitrary decay spaces. Finally, we explore the dependence on Z in the approximability of core problems. In particular, we observe that the capacity maximization problem has exponential upper and lower bounds in terms of Z in general decay spaces. In Euclidean metrics and related growth-bounded decay spaces, the performance depends on the exact metricity definition, with a polynomial upper bound in terms of Z, but an exponential lower bound in terms of a variant parameter phi. On the plane, the upper bound result actually yields the first approximation of a capacity-type SINR problem that is subexponential in alpha
    corecore