158 research outputs found

    Cop and robber game and hyperbolicity

    Full text link
    In this note, we prove that all cop-win graphs G in the game in which the robber and the cop move at different speeds s and s' with s'<s, are \delta-hyperbolic with \delta=O(s^2). We also show that the dependency between \delta and s is linear if s-s'=\Omega(s) and G obeys a slightly stronger condition. This solves an open question from the paper (J. Chalopin et al., Cop and robber games when the robber can hide and ride, SIAM J. Discr. Math. 25 (2011) 333-359). Since any \delta-hyperbolic graph is cop-win for s=2r and s'=r+2\delta for any r>0, this establishes a new - game-theoretical - characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency between \delta and s is linear for any s'<s. Using these results, we describe a simple constant-factor approximation of the hyperbolicity \delta of a graph on n vertices in O(n^2) time when the graph is given by its distance-matrix

    Slimness of graphs

    Full text link
    Slimness of a graph measures the local deviation of its metric from a tree metric. In a graph G=(V,E)G=(V,E), a geodesic triangle (x,y,z)\bigtriangleup(x,y,z) with x,y,zVx, y, z\in V is the union P(x,y)P(x,z)P(y,z)P(x,y) \cup P(x,z) \cup P(y,z) of three shortest paths connecting these vertices. A geodesic triangle (x,y,z)\bigtriangleup(x,y,z) is called δ\delta-slim if for any vertex uVu\in V on any side P(x,y)P(x,y) the distance from uu to P(x,z)P(y,z)P(x,z) \cup P(y,z) is at most δ\delta, i.e. each path is contained in the union of the δ\delta-neighborhoods of two others. A graph GG is called δ\delta-slim, if all geodesic triangles in GG are δ\delta-slim. The smallest value δ\delta for which GG is δ\delta-slim is called the slimness of GG. In this paper, using the layering partition technique, we obtain sharp bounds on slimness of such families of graphs as (1) graphs with cluster-diameter Δ(G)\Delta(G) of a layering partition of GG, (2) graphs with tree-length λ\lambda, (3) graphs with tree-breadth ρ\rho, (4) kk-chordal graphs, AT-free graphs and HHD-free graphs. Additionally, we show that the slimness of every 4-chordal graph is at most 2 and characterize those 4-chordal graphs for which the slimness of every of its induced subgraph is at most 1

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author
    corecore