10 research outputs found

    Approximation Algorithms for Multi-Criteria Traveling Salesman Problems

    Full text link
    In multi-criteria optimization problems, several objective functions have to be optimized. Since the different objective functions are usually in conflict with each other, one cannot consider only one particular solution as the optimal solution. Instead, the aim is to compute a so-called Pareto curve of solutions. Since Pareto curves cannot be computed efficiently in general, we have to be content with approximations to them. We design a deterministic polynomial-time algorithm for multi-criteria g-metric STSP that computes (min{1 +g, 2g^2/(2g^2 -2g +1)} + eps)-approximate Pareto curves for all 1/2<=g<=1. In particular, we obtain a (2+eps)-approximation for multi-criteria metric STSP. We also present two randomized approximation algorithms for multi-criteria g-metric STSP that achieve approximation ratios of (2g^3 +2g^2)/(3g^2 -2g +1) + eps and (1 +g)/(1 +3g -4g^2) + eps, respectively. Moreover, we present randomized approximation algorithms for multi-criteria g-metric ATSP (ratio 1/2 + g^3/(1 -3g^2) + eps) for g < 1/sqrt(3)), STSP with weights 1 and 2 (ratio 4/3) and ATSP with weights 1 and 2 (ratio 3/2). To do this, we design randomized approximation schemes for multi-criteria cycle cover and graph factor problems.Comment: To appear in Algorithmica. A preliminary version has been presented at the 4th Workshop on Approximation and Online Algorithms (WAOA 2006

    Multi-criteria TSP:Min and max combined

    Get PDF
    We present randomized approximation algorithms for multi-criteria traveling salesman problems (TSP), where some objective functions should be minimized while others should be maximized. For the symmetric multi-criteria TSP (STSP), we present an algorithm that computes (2/3,3+ε3+\varepsilon)-approximate Pareto curves. Here, the first parameter is the approximation ratio for the objectives that should be maximized, and the second parameter is the ratio for the objectives that should be minimized. For the asymmetric multi-criteria TSP (ATSP), we obtain an approximation performance of (1/2, log2n+ε\log_2 n + \varepsilon)

    On Approximating Multi-Criteria TSP

    Get PDF
    We present approximation algorithms for almost all variants of the multi-criteria traveling salesman problem (TSP). First, we devise randomized approximation algorithms for multi-criteria maximum traveling salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have to be symmetric, we devise an algorithm with an approximation ratio of 2/3 - eps. For multi-criteria Max-ATSP, where the edge weights may be asymmetric, we present an algorithm with a ratio of 1/2 - eps. Our algorithms work for any fixed number k of objectives. Furthermore, we present a deterministic algorithm for bi-criteria Max-STSP that achieves an approximation ratio of 7/27. Finally, we present a randomized approximation algorithm for the asymmetric multi-criteria minimum TSP with triangle inequality Min-ATSP. This algorithm achieves a ratio of log n + eps.Comment: Preliminary version at STACS 2009. This paper is a revised full version, where some proofs are simplifie

    Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems

    Get PDF
    The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Set Covering problem (MOSCP). The computational experiment is confined to two-objective problems that are found in the literature. The performance of the algorithm is slightly better to what is already found from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the exact solution in MOTSP and MOSCP problems

    Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems

    Get PDF
    The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Set Covering problem (MOSCP). The computational experiment is confined to two-objective problems that are found in the literature. The performance of the algorithm is slightly better to what is already found from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the exact solution in MOTSP and MOSCP problems

    Approximation algorithms for multi-criteria traveling salesman problems

    Get PDF
    We analyze approximation algorithms for several variants of the traveling salesman problem with multiple objective functions. First, we consider the symmetric TSP (STSP) with γ\gamma-triangle inequality. For this problem, we present a deterministic polynomial-time algorithm that achieves an approximation ratio of min{1+γ,2γ22γ22γ+1}+ε\min\left\{1+\gamma,{2\gamma^2\over 2\gamma^2-2\gamma +1}\right\} + \varepsilon and a randomized approximation algorithm that achieves a ratio of 2γ3+2γ23γ22γ+1+ε{2\gamma^3 + 2\gamma^2\over 3\gamma^2-2\gamma +1} + \varepsilon. In particular, we obtain a 2+ε2+\varepsilon approximation for multi-criteria metric STSP. Then we show that multi-criteria cycle cover problems admit fully polynomial-time randomized approximation schemes. Based on these schemes, we present randomized approximation algorithms for STSP with γ\gamma-triangle inequality ratio 1γ1+3γ4γ2+ε{1\gamma\over 1+3\gamma-4\gamma^2}+ \varepsilon ), asymmetric TSP (ATSP) with γ\gamma-triangle inequality (ratio 12+γ313γ2+ε{1\over 2} + {\gamma^3\over 1-3\gamma^2}+ \varepsilon ), STSP with weights one and two (ratio 4/3) and ATSP with weights one and two (ratio 3/2)

    Multi-criteria TSP: Min and Max combined

    No full text
    We present randomized approximation algorithms for multi-criteria traveling salesman problems (TSP), where some objective functions should be minimized while others should be maximized. For the symmetric multi-criteria TSP (STSP), we present an algorithm that computes (2/3 − ε, 4 + ε) approximate Pareto curves. Here, the first parameter is the approximation ratio for the objectives that should be maximized, and the second parameter is the ratio for the objectives that should be minimized. For the asymmetric multi-criteria TSP (ATSP), we present an algorithm that computes (1/2 − ε, log2 n + ε) approximate Pareto curves. In order to obtain these results, we simplify the existing approximation algorithms for multi-criteria Max-STSP and Max-ATSP. Finally, we give algorithms with improved ratios for some special cases
    corecore