121,768 research outputs found

    Fast and Deterministic Approximations for k-Cut

    Get PDF
    In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time? We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut

    Certified Algorithms: Worst-Case Analysis and Beyond

    Get PDF
    In this paper, we introduce the notion of a certified algorithm. Certified algorithms provide worst-case and beyond-worst-case performance guarantees. First, a ?-certified algorithm is also a ?-approximation algorithm - it finds a ?-approximation no matter what the input is. Second, it exactly solves ?-perturbation-resilient instances (?-perturbation-resilient instances model real-life instances). Additionally, certified algorithms have a number of other desirable properties: they solve both maximization and minimization versions of a problem (e.g. Max Cut and Min Uncut), solve weakly perturbation-resilient instances, and solve optimization problems with hard constraints. In the paper, we define certified algorithms, describe their properties, present a framework for designing certified algorithms, provide examples of certified algorithms for Max Cut/Min Uncut, Minimum Multiway Cut, k-medians and k-means. We also present some negative results

    Local Search Approximation Algorithms for Clustering Problems

    Get PDF
    In this research we study the use of local search in the design of approximation algorithms for NP-hard optimization problems. For our study we have selected several well-known clustering problems: k-facility location problem, minimum mutliway cut problem, and constrained maximum k-cut problem. We show that by careful use of the local optimality property of the solutions produced by local search algorithms it is possible to bound the ratio between solutions produced by local search approximation algorithms and optimum solutions. This ratio is known as the locality gap. The locality gap of our algorithm for the k-uncapacitated facility location problem is 2+sqrt(3) +epsilon for any constant epsilon \u3e0. This matches the approximation ratio of the best known algorithm for the problem, proposed by Zhang but our algorithm is simpler. For the minimum multiway cut problem our algorithm has locality gap 2-2/k, which matches the approximation ratio of the isolation heuristic of Dahlhaus et al; however, our experimental results show that in practice our local search algorithm greatly outperforms the isolation heuristic, and furthermore it has comparable performance as that of the three currently best algorithms for the minimum multiway cut problem. For the constrained maximum k-cut problem on hypergraphs we proposed a local search based approximation algorithm with locality gap 1-1/k for a variety of constraints imposed on the k-cuts. The locality gap of our algorithm matches the approximation ratio of the best known algorithm for the max k-cut problem on graphs designed by Vazirani, but our algorithm is more general

    The Steiner \u3cem\u3ek\u3c/em\u3e-Cut Problem

    Get PDF
    We consider the Steiner k-cut problem which generalizes both the k-cut problem and the multiway cut problem. The Steiner k-cut problem is defined as follows. Given an edge-weighted undirected graph G = (V,E), a subset of vertices X ⊆ V called terminals, and an integer k ≤ |X|, the objective is to find a minimum weight set of edges whose removal results in k disconnected components, each of which contains at least one terminal. We give two approximation algorithms for the problem: a greedy (2 − 2/k )-approximation based on Gomory–Hu trees, and a (2 − 2/|X|)-approximation based on rounding a linear program. We use the insight from the rounding to develop an exact bidirected formulation for the global minimum cut problem (the k-cut problem with k = 2)

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP ⊈\nsubseteq BPP, no polynomial time algorithm gives n1−εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2−ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page
    • …
    corecore