7 research outputs found

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    Streaming Complexity of Spanning Tree Computation

    Get PDF
    The semi-streaming model is a variant of the streaming model frequently used for the computation of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes using Õ(n) space. If the list of edges includes deletions, then the model is called the turnstile model; otherwise it is called the insertion-only model. In both models, some graph problems, such as spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (Δ+1)-coloring, can be exactly solved or (1+ε)-approximated in a single pass; while other graph problems, such as triangle detection and unweighted all-pairs shortest paths, are known to require Ω̃(n) passes to compute. For many fundamental graph problems, the tractability in these models is open. In this paper, we study the tractability of computing some standard spanning trees, including BFS, DFS, and maximum-leaf spanning trees. Our results, in both the insertion-only and the turnstile models, are as follows. Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability constant ρ ∈ [245/244, 2). By constructing an ε-MLST sparsifier, we show that for every constant ε > 0, MLST can be approximated in a single pass to within a factor of 1+ε w.h.p. (albeit in super-polynomial time for ε ≤ ρ-1 assuming P ≠ NP) and can be approximated in polynomial time in a single pass to within a factor of ρ_n+ε w.h.p., where ρ_n is the supremum constant that MLST cannot be approximated to within using polynomial time and Õ(n) space. In the insertion-only model, these algorithms can be deterministic. BFS Trees: It is known that BFS trees require ω(1) passes to compute, but the naïve approach needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to O(√n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a polynomial separation between single-source and all-pairs shortest paths for unweighted graphs. DFS Trees: It is unknown whether DFS trees require more than one pass. The current best algorithm by Khan and Mehta [STACS 2019] takes Õ(h) passes, where h is the height of computed DFS trees. Note that h can be as large as Ω(m/n) for n-node m-edge graphs. Our contribution is twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the pass complexity to O(√n), and it also offers a smooth tradeoff between pass complexity and space usage.ISSN:1868-896

    Approximating Connected Maximum Cuts via Local Search

    Get PDF
    The Connected Max Cut (CMC) problem takes in an undirected graph G(V,E) and finds a subset S ? V such that the induced subgraph G[S] is connected and the number of edges connecting vertices in S to vertices in V?S is maximized. This problem is closely related to the Max Leaf Degree (MLD) problem. The input to the MLD problem is an undirected graph G(V,E) and the goal is to find a subtree of G that maximizes the degree (in G) of its leaves. [Gandhi et al. 2018] observed that an ?-approximation for the MLD problem induces an ?(?)-approximation for the CMC problem. We present an ?(log log |V|)-approximation algorithm for the MLD problem via local search. This implies an ?(log log |V|)-approximation algorithm for the CMC problem. Thus, improving (exponentially) the best known ?(log |V|) approximation of the Connected Max Cut problem [Hajiaghayi et al. 2015]

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore