14,572 research outputs found

    Asymptotic optimality of the cross-entropy method for Markov chain problems

    Get PDF
    The correspondence between the cross-entropy method and the zero-variance approximation to simulate a rare event problem in Markov chains is shown. This leads to a sufficient condition that the cross-entropy estimator is asymptotically optimal.Comment: 13 pager; 3 figure

    Some advances in importance sampling of reliability models based on zero variance approximation

    Get PDF
    We are interested in estimating, through simulation, the probability of entering a rare failure state before a regeneration state. Since this probability is typically small, we apply importance sampling. The method that we use is based on finding the most likely paths to failure. We present an algorithm that is guaranteed to produce an estimator that meets the conditions presented in [10] [9] for vanishing relative error. We furthermore demonstrate how the procedure that is used to obtain the change of measure can be executed a second time to achieve even further variance reduction, using ideas from [5], and also apply this technique to the method of failure biasing, with which we compare our results

    Rare event simulation for highly dependable systems with fast repairs

    Get PDF
    Stochastic model checking has been used recently to assess, among others, dependability measures for a variety of systems. However, the employed numerical methods, as, e.g., supported by model checking tools such as PRISM and MRMC, suffer from the state-space explosion problem. The main alternative is statistical model checking, which uses standard simulation, but this performs poorly when small probabilities need to be estimated. Therefore, we propose a method based on importance sampling to speed up the simulation process in cases where the failure probabilities are small due to the high speed of the system's repair units. This setting arises naturally in Markovian models of highly dependable systems. We show that our method compares favourably to standard simulation, to existing importance sampling techniques and to the numerical techniques of PRISM

    Meta-models for structural reliability and uncertainty quantification

    Get PDF
    A meta-model (or a surrogate model) is the modern name for what was traditionally called a response surface. It is intended to mimic the behaviour of a computational model M (e.g. a finite element model in mechanics) while being inexpensive to evaluate, in contrast to the original model which may take hours or even days of computer processing time. In this paper various types of meta-models that have been used in the last decade in the context of structural reliability are reviewed. More specifically classical polynomial response surfaces, polynomial chaos expansions and kriging are addressed. It is shown how the need for error estimates and adaptivity in their construction has brought this type of approaches to a high level of efficiency. A new technique that solves the problem of the potential biasedness in the estimation of a probability of failure through the use of meta-models is finally presented.Comment: Keynote lecture Fifth Asian-Pacific Symposium on Structural Reliability and its Applications (5th APSSRA) May 2012, Singapor
    corecore