18 research outputs found

    Approximating the Little Grothendieck Problem over the Orthogonal and Unitary Groups

    Get PDF
    The little Grothendieck problem consists of maximizing ∑ijCijxixj\sum_{ij}C_{ij}x_ix_j over binary variables xi∈{±1}x_i\in\{\pm1\}, where C is a positive semidefinite matrix. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C a dn x dn positive semidefinite matrix, the objective is to maximize ∑ijTr(CijTOiOjT)\sum_{ij}Tr (C_{ij}^TO_iO_j^T) restricting OiO_i to take values in the group of orthogonal matrices, where CijC_{ij} denotes the (ij)-th d x d block of C. We propose an approximation algorithm, which we refer to as Orthogonal-Cut, to solve this problem and show a constant approximation ratio. Our method is based on semidefinite programming. For a given d≥1d\geq 1, we show a constant approximation ratio of αR(d)2\alpha_{R}(d)^2, where αR(d)\alpha_{R}(d) is the expected average singular value of a d x d matrix with random Gaussian N(0,1/d)N(0,1/d) i.i.d. entries. For d=1 we recover the known αR(1)2=2/π\alpha_{R}(1)^2=2/\pi approximation guarantee for the classical little Grothendieck problem. Our algorithm and analysis naturally extends to the complex valued case also providing a constant approximation ratio for the analogous problem over the Unitary Group. Orthogonal-Cut also serves as an approximation algorithm for several applications, including the Procrustes problem where it improves over the best previously known approximation ratio of~122\frac1{2\sqrt{2}}. The little Grothendieck problem falls under the class of problems approximated by a recent algorithm proposed in the context of the non-commutative Grothendieck inequality. Nonetheless, our approach is simpler and it provides a more efficient algorithm with better approximation ratios and matching integrality gaps. Finally, we also provide an improved approximation algorithm for the more general little Grothendieck problem over the orthogonal (or unitary) group with rank constraints.Comment: Updates in version 2: extension to the complex valued (unitary group) case, sharper lower bounds on the approximation ratios, matching integrality gap, and a generalized rank constrained version of the problem. Updates in version 3: Improvement on the expositio

    Open problem: Tightness of maximum likelihood semidefinite relaxations

    Full text link
    We have observed an interesting, yet unexplained, phenomenon: Semidefinite programming (SDP) based relaxations of maximum likelihood estimators (MLE) tend to be tight in recovery problems with noisy data, even when MLE cannot exactly recover the ground truth. Several results establish tightness of SDP based relaxations in the regime where exact recovery from MLE is possible. However, to the best of our knowledge, their tightness is not understood beyond this regime. As an illustrative example, we focus on the generalized Procrustes problem

    Disentangling Orthogonal Matrices

    Full text link
    Motivated by a certain molecular reconstruction methodology in cryo-electron microscopy, we consider the problem of solving a linear system with two unknown orthogonal matrices, which is a generalization of the well-known orthogonal Procrustes problem. We propose an algorithm based on a semi-definite programming (SDP) relaxation, and give a theoretical guarantee for its performance. Both theoretically and empirically, the proposed algorithm performs better than the na\"{i}ve approach of solving the linear system directly without the orthogonal constraints. We also consider the generalization to linear systems with more than two unknown orthogonal matrices
    corecore