662 research outputs found

    Discontinuous collocation methods and gravitational self-force applications

    Full text link
    Numerical simulations of extereme mass ratio inspirals, the mostimportant sources for the LISA detector, face several computational challenges. We present a new approach to evolving partial differential equations occurring in black hole perturbation theory and calculations of the self-force acting on point particles orbiting supermassive black holes. Such equations are distributionally sourced, and standard numerical methods, such as finite-difference or spectral methods, face difficulties associated with approximating discontinuous functions. However, in the self-force problem we typically have access to full a-priori information about the local structure of the discontinuity at the particle. Using this information, we show that high-order accuracy can be recovered by adding to the Lagrange interpolation formula a linear combination of certain jump amplitudes. We construct discontinuous spatial and temporal discretizations by operating on the corrected Lagrange formula. In a method-of-lines framework, this provides a simple and efficient method of solving time-dependent partial differential equations, without loss of accuracy near moving singularities or discontinuities. This method is well-suited for the problem of time-domain reconstruction of the metric perturbation via the Teukolsky or Regge-Wheeler-Zerilli formalisms. Parallel implementations on modern CPU and GPU architectures are discussed.Comment: 29 pages, 5 figure

    Complete Algebraic Reconstruction of Piecewise-Smooth Functions from Fourier Data

    Full text link
    In this paper we provide a reconstruction algorithm for piecewise-smooth functions with a-priori known smoothness and number of discontinuities, from their Fourier coefficients, posessing the maximal possible asymptotic rate of convergence -- including the positions of the discontinuities and the pointwise values of the function. This algorithm is a modification of our earlier method, which is in turn based on the algebraic method of K.Eckhoff proposed in the 1990s. The key ingredient of the new algorithm is to use a different set of Eckhoff's equations for reconstructing the location of each discontinuity. Instead of consecutive Fourier samples, we propose to use a "decimated" set which is evenly spread throughout the spectrum

    Pointwise Convergence of Jacobi Polynomials

    Get PDF
    The goal of this thesis is to numerically study a pointwise Jacobi convergence theorem for piecewise analytic functions based on the theorem on Legendre error. The convergence rates were examined on the boundary, singularity, and interior points. Results revealed that pointwise error convergence rates depend on the point of singularity, Jacobi polynomial coefficients α and β, and, lastly, on type of the piecewise analytic function

    Gibbs Phenomenon for Jacobi Approximations

    Get PDF
    The classical Gibbs phenomenon is a peculiarity that arises when approximating functions near a jump discontinuity with the Fourier series. Namely, the Fourier series overshoots (and undershoots ) the discontinuity by approximately 9% of the total jump. This same phenomenon, with the same value of the overshoot, has been shown to occur when approximating jump-discontinuous functions using specific families of orthogonal polynomials. In this paper, we extend these results and prove that the Gibbs phenomenon exists for approximations of functions with interior jump discontinuities with the two-parameter family of Jacobi polynomials Pn(a,b)(x). In particular, we show that for all a, b the approximation overshoots and undershoots the function by the same value as in the classical case – approximately 9% of the jump

    Reduction of the Gibbs Phenomenon via Interpolation Using Chebyshev Polynomials, Filtering and Chebyshev-Pade\u27 Approximations

    Get PDF
    In this manuscript, we will examine several methods of interpolation, with an emphasis on Chebyshev polynomials and the removal of the Gibbs Phenomenon. Included as an appendix are the author’s Mat- Lab implementations of Lagrange, Chebyshev, and rational interpolation methods

    Algebraic Fourier reconstruction of piecewise smooth functions

    Full text link
    Accurate reconstruction of piecewise-smooth functions from a finite number of Fourier coefficients is an important problem in various applications. The inherent inaccuracy, in particular the Gibbs phenomenon, is being intensively investigated during the last decades. Several nonlinear reconstruction methods have been proposed, and it is by now well-established that the "classical" convergence order can be completely restored up to the discontinuities. Still, the maximal accuracy of determining the positions of these discontinuities remains an open question. In this paper we prove that the locations of the jumps (and subsequently the pointwise values of the function) can be reconstructed with at least "half the classical accuracy". In particular, we develop a constructive approximation procedure which, given the first kk Fourier coefficients of a piecewise-C2d+1C^{2d+1} function, recovers the locations of the jumps with accuracy ∼k−(d+2)\sim k^{-(d+2)}, and the values of the function between the jumps with accuracy ∼k−(d+1)\sim k^{-(d+1)} (similar estimates are obtained for the associated jump magnitudes). A key ingredient of the algorithm is to start with the case of a single discontinuity, where a modified version of one of the existing algebraic methods (due to K.Eckhoff) may be applied. It turns out that the additional orders of smoothness produce a highly correlated error terms in the Fourier coefficients, which eventually cancel out in the corresponding algebraic equations. To handle more than one jump, we propose to apply a localization procedure via a convolution in the Fourier domain

    Moment inversion problem for piecewise D-finite functions

    Full text link
    We consider the problem of exact reconstruction of univariate functions with jump discontinuities at unknown positions from their moments. These functions are assumed to satisfy an a priori unknown linear homogeneous differential equation with polynomial coefficients on each continuity interval. Therefore, they may be specified by a finite amount of information. This reconstruction problem has practical importance in Signal Processing and other applications. It is somewhat of a ``folklore'' that the sequence of the moments of such ``piecewise D-finite''functions satisfies a linear recurrence relation of bounded order and degree. We derive this recurrence relation explicitly. It turns out that the coefficients of the differential operator which annihilates every piece of the function, as well as the locations of the discontinuities, appear in this recurrence in a precisely controlled manner. This leads to the formulation of a generic algorithm for reconstructing a piecewise D-finite function from its moments. We investigate the conditions for solvability of the resulting linear systems in the general case, as well as analyze a few particular examples. We provide results of numerical simulations for several types of signals, which test the sensitivity of the proposed algorithm to noise
    • …
    corecore