8 research outputs found

    Sensor configuration selection for discrete-event systems under unreliable observations

    Full text link
    Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events

    An Optimization Approach to Petri Net Monitor Design

    Full text link

    Small Logs for Transactional Services: Distinction is Much More Accurate than (Positive) Discrimination

    Full text link

    Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system

    Get PDF
    New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks
    corecore