7,949 research outputs found

    Reoptimization of Some Maximum Weight Induced Hereditary Subgraph Problems

    Get PDF
    The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Π, an optimal solution OPT for Π in I and an instance I′ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Π in I', either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph and max split subgraph under vertex insertions and deletion

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating logZ(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error ϵn\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/ϵ1/\epsilon, and we also provide a lower bound quadratic in 1/ϵ1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/ϵ1/\epsilon and the lower bound is quadratic in 1/ϵ1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    On the Displacement of Eigenvalues when Removing a Twin Vertex

    Get PDF
    Twin vertices of a graph have the same open neighbourhood. If they are not adjacent, then they are called duplicates and contribute the eigenvalue zero to the adjacency matrix. Otherwise they are termed co-duplicates, when they contribute 1-1 as an eigenvalue of the adjacency matrix. On removing a twin vertex from a graph, the spectrum of the adjacency matrix does not only lose the eigenvalue 00 or 1-1. The perturbation sends a rippling effect to the spectrum. The simple eigenvalues are displaced. We obtain a closed formula for the characteristic polynomial of a graph with twin vertices in terms of two polynomials associated with the perturbed graph. These are used to obtain estimates of the displacements in the spectrum caused by the perturbation
    corecore