9 research outputs found

    Approximating Subdense Instances of Covering Problems

    Full text link
    We study approximability of subdense instances of various covering problems on graphs, defined as instances in which the minimum or average degree is Omega(n/psi(n)) for some function psi(n)=omega(1) of the instance size. We design new approximation algorithms as well as new polynomial time approximation schemes (PTASs) for those problems and establish first approximation hardness results for them. Interestingly, in some cases we were able to prove optimality of the underlying approximation ratios, under usual complexity-theoretic assumptions. Our results for the Vertex Cover problem depend on an improved recursive sampling method which could be of independent interest

    On Approximability of Bounded Degree Instances of Selected Optimization Problems

    Get PDF
    In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances. The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant. In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics

    Pliability and approximating max-CSPs

    Get PDF
    We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time algorithm for an arbitrarily good approximation of the optimal value in a large class of Max-2-CSPs parameterised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing a polynomial-time approximation scheme. One is Baker’s layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer´edi’s regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. On the other hand, we prove that the condition cannot be used to find solutions (as opposed to approximating the optimal value) in general. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionallytreewidth-fragile and has bounded degree

    Treewidth-Pliability and PTAS for Max-CSPs

    Full text link
    We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time approximation scheme (PTAS) for a large class of Max-2-CSPs parametrised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing PTASes. One is Baker's layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer\'{e}di's regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionally-treewidth-fragile and has bounded degree

    On Approximability, Convergence, and Limits of CSP Problems

    Get PDF
    This thesis studies dense constraint satisfaction problems (CSPs), and other related optimization and decision problems that can be phrased as questions regarding parameters or properties of combinatorial objects such as uniform hypergraphs. We concentrate on the information that can be derived from a very small substructure that is selected uniformly at random. In this thesis, we present a unified framework on the limits of CSPs in the sense of the convergence notion of Lovasz-Szegedy that depends only on the remarkable connection between graph sequences and exchangeable arrays established by Diaconis-Janson. In particular, we formulate and prove a representation theorem for compact colored r-uniform directed hypergraphs and apply this to rCSPs. We investigate the sample complexity of testable r-graph parameters, and discuss a generalized version of ground state energies (GSE) and demonstrate that they are efficiently testable. The GSE is a term borrowed from statistical physics that stands for a generalized version of maximal multiway cut problems from complexity theory, and was studied in the dense graph setting by Borgs et al. A notion related to testing CSPs that are defined on graphs, the nondeterministic property testing, was introduced by Lovasz-Vesztergombi, which extends the graph property testing framework of Goldreich-Goldwasser-Ron in the dense graph model. In this thesis, we study the sample complexity of nondeterministically testable graph parameters and properties and improve existing bounds by several orders of magnitude. Further, we prove the equivalence of the notions of nondeterministic and deterministic parameter and property testing for uniform dense hypergraphs of arbitrary rank, and provide the first effective upper bound on the sample complexity in this general case

    Contributions from the Gray Herbarium of Harvard University.

    Get PDF
    no. 51-61 1917-2
    corecore