14 research outputs found

    Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

    Full text link
    Given a set of nn terminals, which are points in dd-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for d=2d=2, the problem is NP-hard, but constant-factor approximations are known. For d≄3d \ge 3, the problem is APX-hard; it is known to admit, for any \eps > 0, an O(n^\eps)-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set RR of nn terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in RR is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an O(log⁥d+1n)O(\log^{d+1} n)-approximation algorithm for GMMN (and, hence, MMN) in d≄2d \ge 2 dimensions and an O(log⁥n)O(\log n)-approximation algorithm for 2D. We show that an existing O(log⁥n)O(\log n)-approximation algorithm for RSA in 2D generalizes easily to d>2d>2 dimensions.Comment: 14 pages, 5 figures; added appendix and figure

    Bidirected minimum Manhattan network problem

    Full text link
    In the bidirected minimum Manhattan network problem, given a set T of n terminals in the plane, we need to construct a network N(T) of minimum total length with the property that the edges of N(T) are axis-parallel and oriented in a such a way that every ordered pair of terminals is connected in N(T) by a directed Manhattan path. In this paper, we present a polynomial factor 2 approximation algorithm for the bidirected minimum Manhattan network problem.Comment: 14 pages, 16 figure

    Optimal Partitioning of a Surveillance Space for Persistent Coverage Using Multiple Autonomous Unmanned Aerial Vehicles: An Integer Programming Approach

    Get PDF
    Unmanned aerial vehicles (UAVs) are an essential tool for the battle eld commander in part because they represent an attractive intelligence gathering platform that can quickly identify targets and track movements of individuals within areas of interest. In order to provide meaningful intelligence in near-real time during a mission, it makes sense to operate multiple UAVs with some measure of autonomy to survey the entire area persistently over the mission timeline. This research considers a space where intelligence has identi ed a number of locations and their surroundings that need to be monitored for a period of time. An integer program is formulated and solved to partition this surveillance space into the minimum number of subregions such that these locations fall outside of each partitioned subregion for e cient, persistent surveillance of the locations and their surroundings. Partitioning is followed by a UAV-to-partitioned subspace matching algorithm so that each subregion of the partitioned surveillance space is assigned exactly one UAV. Because the size of the partition is minimized, the number of UAVs used is also minimized

    Algorithm engineering in geometric network planning and data mining

    Get PDF
    The geometric nature of computational problems provides a rich source of solution strategies as well as complicating obstacles. This thesis considers three problems in the context of geometric network planning, data mining and spherical geometry. Geometric Network Planning: In the d-dimensional Generalized Minimum Manhattan Network problem (d-GMMN) one is interested in finding a minimum cost rectilinear network N connecting a given set of n pairs of points in ℝ^d such that each pair is connected in N via a shortest Manhattan path. The decision version of this optimization problem is known to be NP-hard. The best known upper bound is an O(log^{d+1} n) approximation for d>2 and an O(log n) approximation for 2-GMMN. In this work we provide some more insight in, whether the problem admits constant factor approximations in polynomial time. We develop two new algorithms, a `scale-diversity aware' algorithm with an O(D) approximation guarantee for 2-GMMN. Here D is a measure for the different `scales' that appear in the input, D ∈ O(log n) but potentially much smaller, depending on the problem instance. The other algorithm is based on a primal-dual scheme solving a more general, combinatorial problem - which we call Path Cover. On 2-GMMN it performs well in practice with good a posteriori, instance-based approximation guarantees. Furthermore, it can be extended to deal with obstacle avoiding requirements. We show that the Path Cover problem is at least as hard to approximate as the Hitting Set problem. Moreover, we show that solutions of the primal-dual algorithm are 4ω^2 approximations, where ω ≀ n denotes the maximum overlap of a problem instance. This implies that a potential proof of O(1)-inapproximability for 2-GMMN requires gadgets of many different scales and non-constant overlap in the construction. Geometric Map Matching for Heterogeneous Data: For a given sequence of location measurements, the goal of the geometric map matching is to compute a sequence of movements along edges of a spatially embedded graph which provides a `good explanation' for the measurements. The problem gets challenging as real world data, like traces or graphs from the OpenStreetMap project, does not exhibit homogeneous data quality. Graph details and errors vary in areas and each trace has changing noise and precision. Hence, formalizing what a `good explanation' is becomes quite difficult. We propose a novel map matching approach, which locally adapts to the data quality by constructing what we call dominance decompositions. While our approach is computationally more expensive than previous approaches, our experiments show that it allows for high quality map matching, even in presence of highly variable data quality without parameter tuning. Rational Points on the Unit Spheres: Each non-zero point in ℝ^d identifies a closest point x on the unit sphere S^{d-1}. We are interested in computing an Δ-approximation y ∈ ℚ^d for x, that is exactly on S^{d-1} and has low bit-size. We revise lower bounds on rational approximations and provide explicit spherical instances. We prove that floating-point numbers can only provide trivial solutions to the sphere equation in ℝ^2 and ℝ^3. However, we show how to construct a rational point with denominators of at most 10(d-1)/Δ^2 for any given Δ ∈ (0, 1/8], improving on a previous result. The method further benefits from algorithms for simultaneous Diophantine approximation. Our open-source implementation and experiments demonstrate the practicality of our approach in the context of massive data sets, geo-referenced by latitude and longitude values.Die geometrische Gestalt von Berechnungsproblemen liefert vielfĂ€ltige Lösungsstrategieen aber auch Hindernisse. Diese Arbeit betrachtet drei Probleme im Gebiet der geometrischen Netzwerk Planung, des geometrischen Data Minings und der sphĂ€rischen Geometrie. Geometrische Netzwerk Planung: Im d-dimensionalen Generalized Minimum Manhattan Network Problem (d-GMMN) möchte man ein gĂŒnstigstes geradliniges Netzwerk finden, welches jedes der gegebenen n Punktepaare aus ℝ^d mit einem kĂŒrzesten Manhattan Pfad verbindet. Es ist bekannt, dass die Entscheidungsvariante dieses Optimierungsproblems NP-hart ist. Die beste bekannte obere Schranke ist eine O(log^{d+1} n) Approximation fĂŒr d>2 und eine O(log n) Approximation fĂŒr 2-GMMN. Durch diese Arbeit geben wir etwas mehr Einblick, ob das Problem eine Approximation mit konstantem Faktor in polynomieller Zeit zulĂ€sst. Wir entwickeln zwei neue Algorithmen. Ersterer nutzt die `SkalendiversitĂ€t' und hat eine O(D) ApproximationsgĂŒte fĂŒr 2-GMMN. Hierbei ist D ein Maß fĂŒr die in Eingaben auftretende `Skalen'. D ∈ O(log n), aber potentiell deutlichen kleiner fĂŒr manche Problem Instanzen. Der andere Algorithmus basiert auf einem Primal-Dual Schema zur Lösung eines allgemeineren, kombinatorischen Problems, welches wir Path Cover nennen. Die praktisch erzielten a posteriori ApproximationsgĂŒten auf Instanzen von 2-GMMN verhalten sich gut. Dieser Algorithmus kann fĂŒr Netzwerk Planungsprobleme mit Hindernis-Anforderungen angepasst werden. Wir zeigen, dass das Path Cover Problem mindestens so schwierig zu approximieren ist wie das Hitting Set Problem. DarĂŒber hinaus zeigen wir, dass Lösungen des Primal-Dual Algorithmus 4ω^2 Approximationen sind, wobei ω ≀ n die maximale Überlappung einer Probleminstanz bezeichnet. Daher mĂŒssen potentielle Beweise, die konstante Approximationen fĂŒr 2-GMMN ausschließen möchten, Instanzen mit vielen unterschiedlichen Skalen und nicht konstanter Überlappung konstruieren. Geometrisches Map Matching fĂŒr heterogene Daten: FĂŒr eine gegebene Sequenz von Positionsmessungen ist das Ziel des geometrischen Map Matchings eine Sequenz von Bewegungen entlang Kanten eines rĂ€umlich eingebetteten Graphen zu finden, welche eine `gute ErklĂ€rung' fĂŒr die Messungen ist. Das Problem wird anspruchsvoll da reale Messungen, wie beispielsweise Traces oder Graphen des OpenStreetMap Projekts, keine homogene DatenqualitĂ€t aufweisen. Graphdetails und -fehler variieren in Gebieten und jeder Trace hat wechselndes Rauschen und Messgenauigkeiten. Zu formalisieren, was eine `gute ErklĂ€rung' ist, wird dadurch schwer. Wir stellen einen neuen Map Matching Ansatz vor, welcher sich lokal der DatenqualitĂ€t anpasst indem er sogenannte Dominance Decompositions berechnet. Obwohl unser Ansatz teurer im Rechenaufwand ist, zeigen unsere Experimente, dass qualitativ hochwertige Map Matching Ergebnisse auf hoch variabler DatenqualitĂ€t erzielbar sind ohne vorher Parameter kalibrieren zu mĂŒssen. Rationale Punkte auf EinheitssphĂ€ren: Jeder, von Null verschiedene, Punkt in ℝ^d identifiziert einen nĂ€chsten Punkt x auf der EinheitssphĂ€re S^{d-1}. Wir suchen eine Δ-Approximation y ∈ ℚ^d fĂŒr x zu berechnen, welche exakt auf S^{d-1} ist und niedrige Bit-GrĂ¶ĂŸe hat. Wir wiederholen untere Schranken an rationale Approximationen und liefern explizite, sphĂ€rische Instanzen. Wir beweisen, dass Floating-Point Zahlen nur triviale Lösungen zur SphĂ€ren-Gleichung in ℝ^2 und ℝ^3 liefern können. Jedoch zeigen wir die Konstruktion eines rationalen Punktes mit Nennern die maximal 10(d-1)/Δ^2 sind fĂŒr gegebene Δ ∈ (0, 1/8], was ein bekanntes Resultat verbessert. DarĂŒber hinaus profitiert die Methode von Algorithmen fĂŒr simultane Diophantische Approximationen. Unsere quell-offene Implementierung und die Experimente demonstrieren die PraktikabilitĂ€t unseres Ansatzes fĂŒr sehr große, durch geometrische LĂ€ngen- und Breitengrade referenzierte, DatensĂ€tze

    Approximating Minimum Manhattan Networks (Extended Abstract)

    No full text
    ) Joachim Gudmundsson 1 ? , Christos Levcopoulos 1 y , and Giri Narasimhan 2 z 1 Dept. of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden. 2 Dept. of Mathematical Sciences, The Univ. of Memphis, Memphis, TN 38152, USA. Abstract. Given a set S of n points in the plane, we dene a Manhattan Network on S as a rectilinear network G with the property that for every pair of points in S, the network G contains the shortest rectilinear path between them. A Minimum Manhattan Network on S is a Manhattan network of minimum possible length. A Manhattan network can be thought of as a graph G = (V; E), where the vertex set V corresponds to points from S and a set of steiner points S 0 , and the edges in E correspond to horizontal or vertical line segments connecting points in S [S 0 . A Manhattan network can also be thought of as a 1-spanner (for the L1-metric) for the points in S. Let R be an algorithm that produces a rectangulation of a staircase polygon in..

    Approximating Minimum Manhattan Networks in Higher Dimensions

    No full text
    corecore