6,393 research outputs found

    Causal Dependence Tree Approximations of Joint Distributions for Multiple Random Processes

    Full text link
    We investigate approximating joint distributions of random processes with causal dependence tree distributions. Such distributions are particularly useful in providing parsimonious representation when there exists causal dynamics among processes. By extending the results by Chow and Liu on dependence tree approximations, we show that the best causal dependence tree approximation is the one which maximizes the sum of directed informations on its edges, where best is defined in terms of minimizing the KL-divergence between the original and the approximate distribution. Moreover, we describe a low-complexity algorithm to efficiently pick this approximate distribution.Comment: 9 pages, 15 figure

    Distributed Approximation of Minimum Routing Cost Trees

    Full text link
    We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph GG over nn nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2+ϵ)(2+\epsilon)-approximation with runtime O(D+lognϵ)O(D+\frac{\log n}{\epsilon}) for unweighted graphs. Here, DD is the diameter of GG. This improves over both, the (expected) approximation factor O(logn)O(\log n) and the runtime O(Dlog2n)O(D\log^2 n) of the best previously known algorithm. Due to stating our results in a very general way, we also derive an (optimal) runtime of O(D)O(D) when considering O(logn)O(\log n)-approximations as done by the best previously known algorithm. In addition we derive a deterministic 22-approximation

    Matroidal Degree-Bounded Minimum Spanning Trees

    Full text link
    We consider the minimum spanning tree (MST) problem under the restriction that for every vertex v, the edges of the tree that are adjacent to v satisfy a given family of constraints. A famous example thereof is the classical degree-constrained MST problem, where for every vertex v, a simple upper bound on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-bounded network design problems. A cornerstone for this development was the work of Singh and Lau, who showed for the degree-bounded MST problem how to find a spanning tree violating each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects the degree bounds. However, current iterative rounding approaches face several limits when dealing with more general degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex v, as for example when a partition of the edges adjacent to v is given and only a fixed number of elements can be chosen out of each set of the partition, current approaches might violate each of the constraints by a constant, instead of violating all constraints together by at most a constant number of edges. Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree constraints where some edges are in a super-constant number of constraints. We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects involving their analysis to address these limitations. This leads to an efficient algorithm for the degree-constrained MST problem where for every vertex v, the edges adjacent to v have to be independent in a given matroid. The algorithm returns a spanning tree T of cost at most OPT, such that for every vertex v, it suffices to remove at most 8 edges from T to satisfy the matroidal degree constraint at v

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees

    Full text link
    Given a graph G=(V,E)G = (V, E), we wish to compute a spanning tree whose maximum vertex degree, i.e. tree degree, is as small as possible. Computing the exact optimal solution is known to be NP-hard, since it generalizes the Hamiltonian path problem. For the approximation version of this problem, a O~(mn)\tilde{O}(mn) time algorithm that computes a spanning tree of degree at most Δ+1\Delta^* +1 is previously known [F\"urer \& Raghavachari 1994]; here Δ\Delta^* denotes the minimum tree degree of all the spanning trees. In this paper we give the first near-linear time approximation algorithm for this problem. Specifically speaking, we propose an O~(1ϵ7m)\tilde{O}(\frac{1}{\epsilon^7}m) time algorithm that computes a spanning tree with tree degree (1+ϵ)Δ+O(1ϵ2logn)(1+\epsilon)\Delta^* + O(\frac{1}{\epsilon^2}\log n) for any constant ϵ(0,16)\epsilon \in (0,\frac{1}{6}). Thus, when Δ=ω(logn)\Delta^*=\omega(\log n), we can achieve approximate solutions with constant approximate ratio arbitrarily close to 1 in near-linear time.Comment: 17 page
    corecore