13 research outputs found

    Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective

    Full text link
    Designing neural networks with bounded Lipschitz constant is a promising way to obtain certifiably robust classifiers against adversarial examples. However, the relevant progress for the important ℓ∞\ell_\infty perturbation setting is rather limited, and a principled understanding of how to design expressive ℓ∞\ell_\infty Lipschitz networks is still lacking. In this paper, we bridge the gap by studying certified ℓ∞\ell_\infty robustness from a novel perspective of representing Boolean functions. We derive two fundamental impossibility results that hold for any standard Lipschitz network: one for robust classification on finite datasets, and the other for Lipschitz function approximation. These results identify that networks built upon norm-bounded affine layers and Lipschitz activations intrinsically lose expressive power even in the two-dimensional case, and shed light on how recently proposed Lipschitz networks (e.g., GroupSort and ℓ∞\ell_\infty-distance nets) bypass these impossibilities by leveraging order statistic functions. Finally, based on these insights, we develop a unified Lipschitz network that generalizes prior works, and design a practical version that can be efficiently trained (making certified robust training free). Extensive experiments show that our approach is scalable, efficient, and consistently yields better certified robustness across multiple datasets and perturbation radii than prior Lipschitz networks. Our code is available at https://github.com/zbh2047/SortNet.Comment: 37 pages; to appear in NeurIPS 2022 (Oral

    Reservoir optimization and Machine Learning methods

    Full text link
    After showing the efficiency of feedforward networks to estimate control in high dimension in the global optimization of some storages problems, we develop a modification of an algorithm based on some dynamic programming principle. We show that classical feedforward networks are not effective to estimate Bellman values for reservoir problems and we propose some neural networks giving far better results. At last, we develop a new algorithm mixing LP resolution and conditional cuts calculated by neural networks to solve some stochastic linear problems.Comment: 15 pages, 2 figure

    Neural networks for first order HJB equations and application to front propagation with obstacle terms

    Full text link
    We consider a deterministic optimal control problem with a maximum running cost functional, in a finite horizon context, and propose deep neural network approximations for Bellman's dynamic programming principle, corresponding also to some first-order Hamilton-Jacobi-Bellman equations. This work follows the lines of Hur\'e et al. (SIAM J. Numer. Anal., vol. 59 (1), 2021, pp. 525-557) where algorithms are proposed in a stochastic context. However, we need to develop a completely new approach in order to deal with the propagation of errors in the deterministic setting, where no diffusion is present in the dynamics. Our analysis gives precise error estimates in an average norm. The study is then illustrated on several academic numerical examples related to front propagations models in the presence of obstacle constraints, showing the relevance of the approach for average dimensions (e.g. from 22 to 88), even for non-smooth value functions

    Convolutional Neural Networks as 2-D systems

    Full text link
    This paper introduces a novel representation of convolutional Neural Networks (CNNs) in terms of 2-D dynamical systems. To this end, the usual description of convolutional layers with convolution kernels, i.e., the impulse responses of linear filters, is realized in state space as a linear time-invariant 2-D system. The overall convolutional Neural Network composed of convolutional layers and nonlinear activation functions is then viewed as a 2-D version of a Lur'e system, i.e., a linear dynamical system interconnected with static nonlinear components. One benefit of this 2-D Lur'e system perspective on CNNs is that we can use robust control theory much more efficiently for Lipschitz constant estimation than previously possible

    A neural network approach to high-dimensional optimal switching problems with jumps in energy markets

    Full text link
    We develop a backward-in-time machine learning algorithm that uses a sequence of neural networks to solve optimal switching problems in energy production, where electricity and fossil fuel prices are subject to stochastic jumps. We then apply this algorithm to a variety of energy scheduling problems, including novel high-dimensional energy production problems. Our experimental results demonstrate that the algorithm performs with accuracy and experiences linear to sub-linear slowdowns as dimension increases, demonstrating the value of the algorithm for solving high-dimensional switching problems

    Impossibility Theorems for Feature Attribution

    Full text link
    Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods. In light of these results, it remains unclear for practitioners how to use these methods and choose between them in a principled way. In this paper, we show that for moderately rich model classes (easily satisfied by neural networks), any feature attribution method that is complete and linear -- for example, Integrated Gradients and SHAP -- can provably fail to improve on random guessing for inferring model behaviour. Our results apply to common end-tasks such as characterizing local model behaviour, identifying spurious features, and algorithmic recourse. One takeaway from our work is the importance of concretely defining end-tasks: once such an end-task is defined, a simple and direct approach of repeated model evaluations can outperform many other complex feature attribution methods.Comment: 36 pages, 4 figures. Significantly expanded experiment
    corecore