6 research outputs found

    The set of autotopisms of partial Latin squares

    Get PDF
    Symmetries of a partial Latin square are determined by its autotopism group. Analogously to the case of Latin squares, given an isotopism Θ\Theta, the cardinality of the set PLSΘ\mathcal{PLS}_{\Theta} of partial Latin squares which are invariant under Θ\Theta only depends on the conjugacy class of the latter, or, equivalently, on its cycle structure. In the current paper, the cycle structures of the set of autotopisms of partial Latin squares are characterized and several related properties studied. It is also seen that the cycle structure of Θ\Theta determines the possible sizes of the elements of PLSΘ\mathcal{PLS}_{\Theta} and the number of those partial Latin squares of this set with a given size. Finally, it is generalized the traditional notion of partial Latin square completable to a Latin square.Comment: 20 pages, 4 table

    An Efficient Local Search for Partial Latin Square Extension Problem

    Full text link
    A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n^{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.Comment: 17 pages, 2 figure

    Testing of sequences by simulation

    Get PDF
    Let ξ\xi be a random integer vector, having uniform distribution P{ξ=(i1,i2,...,in)=1/nn} for 1≤i1,i2,...,in≤n.\mathbf{P} \{\xi = (i_1,i_2,...,i_n) = 1/n^n \} \ \hbox{for} \ 1 \leq i_1,i_2,...,i_n\leq n. A realization (i1,i2,...,in)(i_1,i_2,...,i_n) of ξ\xi is called \textit{good}, if its elements are different. We present algorithms \textsc{Linear}, \textsc{Backward}, \textsc{Forward}, \textsc{Tree}, \textsc{Garbage}, \textsc{Bucket} which decide whether a given realization is good. We analyse the number of comparisons and running time of these algorithms using simulation gathering data on all possible inputs for small values of nn and generating random inputs for large values of nn

    Interactive proof system variants and approximation algorithms for optical networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 111-121).by Ravi Sundaram.Ph.D

    Approximating Latin Square Extensions

    No full text
    In this paper, we consider the following question: what is the maximum number of entries that can be added to a partially filled latin square? The decision version of this question is known to be NP-complete. We present two approximation algorithms for the optimization version of this question. We first prove that the greedy algorithm achieves a factor of 1/3. We then use insights derived from the linear relaxation of an integer program to obtain an algorithm based on matchings that achieves a better performance guarantee of 1/2. These are the first known polynomial-time approximation algorithms for the latin square completion problem that achieve non-trivial worst-case performance guarantees. Our motivation derives from applications to the problems of lightpath assignment and switch configuration in wavelength routed multihop optical networks. 1 Motivation 1.1 Optical Networks Developments in fiber-optic networking technology using wavelength division multiplexing (WDM) have finally..
    corecore