22 research outputs found

    On a family of strong geometric spanners that admit local routing strategies

    Full text link
    We introduce a family of directed geometric graphs, denoted \paz, that depend on two parameters λ\lambda and θ\theta. For 0θ<π20\leq \theta<\frac{\pi}{2} and 1/2<λ<1{1/2} < \lambda < 1, the \paz graph is a strong tt-spanner, with t=1(1λ)cosθt=\frac{1}{(1-\lambda)\cos\theta}. The out-degree of a node in the \paz graph is at most 2π/min(θ,arccos12λ)\lfloor2\pi/\min(\theta, \arccos\frac{1}{2\lambda})\rfloor. Moreover, we show that routing can be achieved locally on \paz. Next, we show that all strong tt-spanners are also tt-spanners of the unit disk graph. Simulations for various values of the parameters λ\lambda and θ\theta indicate that for random point sets, the spanning ratio of \paz is better than the proven theoretical bounds

    Undirected Connectivity of Sparse Yao Graphs

    Full text link
    Given a finite set S of points in the plane and a real value d > 0, the d-radius disk graph G^d contains all edges connecting pairs of points in S that are within distance d of each other. For a given graph G with vertex set S, the Yao subgraph Y_k[G] with integer parameter k > 0 contains, for each point p in S, a shortest edge pq from G (if any) in each of the k sectors defined by k equally-spaced rays with origin p. Motivated by communication issues in mobile networks with directional antennas, we study the connectivity properties of Y_k[G^d], for small values of k and d. In particular, we derive lower and upper bounds on the minimum radius d that renders Y_k[G^d] connected, relative to the unit radius assumed to render G^d connected. We show that d=sqrt(2) is necessary and sufficient for the connectivity of Y_4[G^d]. We also show that, for d = 2/sqrt(3), Y_3[G^d] is always connected. Finally, we show that Y_2[G^d] can be disconnected, for any d >= 1.Comment: 7 pages, 11 figure

    An Efficient Construction of Yao-Graph in Data-Distributed Settings

    Full text link
    A sparse graph that preserves an approximation of the shortest paths between all pairs of points in a plane is called a geometric spanner. Using range trees of sublinear size, we design an algorithm in massively parallel computation (MPC) model for constructing a geometric spanner known as Yao-graph. This improves the total time and the total memory of existing algorithms for geometric spanners from subquadratic to near-linear

    An Infinite Class of Sparse-Yao Spanners

    Full text link
    We show that, for any integer k > 5, the Sparse-Yao graph YY_{6k} (also known as Yao-Yao) is a spanner with stretch factor 11.67. The stretch factor drops down to 4.75 for k > 7.Comment: 17 pages, 12 figure

    Pi/2-Angle Yao Graphs are Spanners

    Get PDF
    We show that the Yao graph Y4 in the L2 metric is a spanner with stretch factor 8(29+23sqrt(2)). Enroute to this, we also show that the Yao graph Y4 in the Linf metric is a planar spanner with stretch factor 8.Comment: 20 pages, 9 figure

    Master index of Volumes 21–30

    Get PDF
    corecore