26 research outputs found

    Approximating Bin Packing within O(log OPT * log log OPT) bins

    Full text link
    For bin packing, the input consists of n items with sizes s_1,...,s_n in [0,1] which have to be assigned to a minimum number of bins of size 1. The seminal Karmarkar-Karp algorithm from '82 produces a solution with at most OPT + O(log^2 OPT) bins. We provide the first improvement in now 3 decades and show that one can find a solution of cost OPT + O(log OPT * log log OPT) in polynomial time. This is achieved by rounding a fractional solution to the Gilmore-Gomory LP relaxation using the Entropy Method from discrepancy theory. The result is constructive via algorithms of Bansal and Lovett-Meka

    On largest volume simplices and sub-determinants

    Full text link
    We show that the problem of finding the simplex of largest volume in the convex hull of nn points in Qd\mathbb{Q}^d can be approximated with a factor of O(logd)d/2O(\log d)^{d/2} in polynomial time. This improves upon the previously best known approximation guarantee of d(d1)/2d^{(d-1)/2} by Khachiyan. On the other hand, we show that there exists a constant c>1c>1 such that this problem cannot be approximated with a factor of cdc^d, unless P=NPP=NP. % This improves over the 1.091.09 inapproximability that was previously known. Our hardness result holds even if n=O(d)n = O(d), in which case there exists a \bar c\,^{d}-approximation algorithm that relies on recent sampling techniques, where cˉ\bar c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d×nd\times n matrix

    New developments in iterated rounding

    Get PDF
    Iterated rounding is a relatively recent technique in algorithm design, that despite its simplicity has led to several remarkable new results and also simpler proofs of many previous results. We will briefly survey some applications of the method, including some recent developments and giving a high level overview of the ideas

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    Improved Algorithmic Bounds for Discrepancy of Sparse Set Systems

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most tt sets. We give an algorithm that finds a coloring with discrepancy O((tlognlogs)1/2)O((t \log n \log s)^{1/2}) where ss is the maximum cardinality of a set. This improves upon the previous constructive bound of O(t1/2logn)O(t^{1/2} \log n) based on algorithmic variants of the partial coloring method, and for small ss (e.g.s=poly(t)s=\textrm{poly}(t)) comes close to the non-constructive O((tlogn)1/2)O((t \log n)^{1/2}) bound due to Banaszczyk. Previously, no algorithmic results better than O(t1/2logn)O(t^{1/2}\log n) were known even for s=O(t2)s = O(t^2). Our method is quite robust and we give several refinements and extensions. For example, the coloring we obtain satisfies the stronger size-sensitive property that each set SS in the set system incurs an O((tlognlogS)1/2)O((t \log n \log |S|)^{1/2}) discrepancy. Another variant can be used to essentially match Banaszczyk's bound for a wide class of instances even where ss is arbitrarily large. Finally, these results also extend directly to the more general Koml\'{o}s setting

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory
    corecore