578 research outputs found

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    Efficient Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs

    Full text link
    Graphs are an important tool to model data in different domains, including social networks, bioinformatics and the world wide web. Most of the networks formed in these domains are directed graphs, where all the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network GG and a vertex rV(G)r \in V(G), we propose a new exact algorithm to compute betweenness score of rr. Our algorithm pre-computes a set RV(r)\mathcal{RV}(r), which is used to prune a huge amount of computations that do not contribute in the betweenness score of rr. Time complexity of our exact algorithm depends on RV(r)|\mathcal{RV}(r)| and it is respectively Θ(RV(r)E(G))\Theta(|\mathcal{RV}(r)|\cdot|E(G)|) and Θ(RV(r)E(G)+RV(r)V(G)logV(G))\Theta(|\mathcal{RV}(r)|\cdot|E(G)|+|\mathcal{RV}(r)|\cdot|V(G)|\log |V(G)|) for unweighted graphs and weighted graphs with positive weights. RV(r)|\mathcal{RV}(r)| is bounded from above by V(G)1|V(G)|-1 and in most cases, it is a small constant. Then, for the cases where RV(r)\mathcal{RV}(r) is large, we present a simple randomized algorithm that samples from RV(r)\mathcal{RV}(r) and performs computations for only the sampled elements. We show that this algorithm provides an (ϵ,δ)(\epsilon,\delta)-approximation of the betweenness score of rr. Finally, we perform extensive experiments over several real-world datasets from different domains for several randomly chosen vertices as well as for the vertices with the highest betweenness scores. Our experiments reveal that in most cases, our algorithm significantly outperforms the most efficient existing randomized algorithms, in terms of both running time and accuracy. Our experiments also show that our proposed algorithm computes betweenness scores of all vertices in the sets of sizes 5, 10 and 15, much faster and more accurate than the most efficient existing algorithms.Comment: arXiv admin note: text overlap with arXiv:1704.0735

    Faster Betweenness Centrality Updates in Evolving Networks

    Get PDF
    Finding central nodes is a fundamental problem in network analysis. Betweenness centrality is a well-known measure which quantifies the importance of a node based on the fraction of shortest paths going though it. Due to the dynamic nature of many today's networks, algorithms that quickly update centrality scores have become a necessity. For betweenness, several dynamic algorithms have been proposed over the years, targeting different update types (incremental- and decremental-only, fully-dynamic). In this paper we introduce a new dynamic algorithm for updating betweenness centrality after an edge insertion or an edge weight decrease. Our method is a combination of two independent contributions: a faster algorithm for updating pairwise distances as well as number of shortest paths, and a faster algorithm for updating dependencies. Whereas the worst-case running time of our algorithm is the same as recomputation, our techniques considerably reduce the number of operations performed by existing dynamic betweenness algorithms.Comment: Accepted at the 16th International Symposium on Experimental Algorithms (SEA 2017
    corecore