2,335 research outputs found

    Composable and Efficient Mechanisms

    Full text link
    We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple different mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related to smooth games defined by Roughgarden, that can be thought of as mechanisms that generate approximately market clearing prices. We show that smooth mechanisms result in high quality outcome in equilibrium both in the full information setting and in the Bayesian setting with uncertainty about participants, as well as in learning outcomes. Our main result is to show that such mechanisms compose well: smoothness locally at each mechanism implies efficiency globally. For mechanisms where good performance requires that bidders do not bid above their value, we identify the notion of a weakly smooth mechanism. Weakly smooth mechanisms, such as the Vickrey auction, are approximately efficient under the no-overbidding assumption. Similar to smooth mechanisms, weakly smooth mechanisms behave well in composition, and have high quality outcome in equilibrium (assuming no overbidding) both in the full information setting and in the Bayesian setting, as well as in learning outcomes. In most of the paper we assume participants have quasi-linear valuations. We also extend some of our results to settings where participants have budget constraints

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Revenue Maximization and Ex-Post Budget Constraints

    Full text link
    We consider the problem of a revenue-maximizing seller with m items for sale to n additive bidders with hard budget constraints, assuming that the seller has some prior distribution over bidder values and budgets. The prior may be correlated across items and budgets of the same bidder, but is assumed independent across bidders. We target mechanisms that are Bayesian Incentive Compatible, but that are ex-post Individually Rational and ex-post budget respecting. Virtually no such mechanisms are known that satisfy all these conditions and guarantee any revenue approximation, even with just a single item. We provide a computationally efficient mechanism that is a 33-approximation with respect to all BIC, ex-post IR, and ex-post budget respecting mechanisms. Note that the problem is NP-hard to approximate better than a factor of 16/15, even in the case where the prior is a point mass \cite{ChakrabartyGoel}. We further characterize the optimal mechanism in this setting, showing that it can be interpreted as a distribution over virtual welfare maximizers. We prove our results by making use of a black-box reduction from mechanism to algorithm design developed by \cite{CaiDW13b}. Our main technical contribution is a computationally efficient 33-approximation algorithm for the algorithmic problem that results by an application of their framework to this problem. The algorithmic problem has a mixed-sign objective and is NP-hard to optimize exactly, so it is surprising that a computationally efficient approximation is possible at all. In the case of a single item (m=1m=1), the algorithmic problem can be solved exactly via exhaustive search, leading to a computationally efficient exact algorithm and a stronger characterization of the optimal mechanism as a distribution over virtual value maximizers

    The Value of Information Concealment

    Full text link
    We consider a revenue optimizing seller selling a single item to a buyer, on whose private value the seller has a noisy signal. We show that, when the signal is kept private, arbitrarily more revenue could potentially be extracted than if the signal is leaked or revealed. We then show that, if the seller is not allowed to make payments to the buyer, the gap between the two is bounded by a multiplicative factor of 3, if the value distribution conditioning on each signal is regular. We give examples showing that both conditions are necessary for a constant bound to hold. We connect this scenario to multi-bidder single-item auctions where bidders' values are correlated. Similarly to the setting above, we show that the revenue of a Bayesian incentive compatible, ex post individually rational auction can be arbitrarily larger than that of a dominant strategy incentive compatible auction, whereas the two are no more than a factor of 5 apart if the auctioneer never pays the bidders and if each bidder's value conditioning on the others' is drawn according to a regular distribution. The upper bounds in both settings degrade gracefully when the distribution is a mixture of a small number of regular distributions

    Lower Bounds on Revenue of Approximately Optimal Auctions

    Get PDF
    We obtain revenue guarantees for the simple pricing mechanism of a single posted price, in terms of a natural parameter of the distribution of buyers' valuations. Our revenue guarantee applies to the single item n buyers setting, with values drawn from an arbitrary joint distribution. Specifically, we show that a single price drawn from the distribution of the maximum valuation Vmax = max {V_1, V_2, ...,V_n} achieves a revenue of at least a 1/e fraction of the geometric expecation of Vmax. This generic bound is a measure of how revenue improves/degrades as a function of the concentration/spread of Vmax. We further show that in absence of buyers' valuation distributions, recruiting an additional set of identical bidders will yield a similar guarantee on revenue. Finally, our bound also gives a measure of the extent to which one can simultaneously approximate welfare and revenue in terms of the concentration/spread of Vmax.Comment: The 8th Workshop on Internet and Network Economics (WINE

    Welfare guarantees for proportional allocations

    Full text link
    According to the proportional allocation mechanism from the network optimization literature, users compete for a divisible resource -- such as bandwidth -- by submitting bids. The mechanism allocates to each user a fraction of the resource that is proportional to her bid and collects an amount equal to her bid as payment. Since users act as utility-maximizers, this naturally defines a proportional allocation game. Recently, Syrgkanis and Tardos (STOC 2013) quantified the inefficiency of equilibria in this game with respect to the social welfare and presented a lower bound of 26.8% on the price of anarchy over coarse-correlated and Bayes-Nash equilibria in the full and incomplete information settings, respectively. In this paper, we improve this bound to 50% over both equilibrium concepts. Our analysis is simpler and, furthermore, we argue that it cannot be improved by arguments that do not take the equilibrium structure into account. We also extend it to settings with budget constraints where we show the first constant bound (between 36% and 50%) on the price of anarchy of the corresponding game with respect to an effective welfare benchmark that takes budgets into account.Comment: 15 page

    On the Concentration of Allocations and Comparisons of Auctions in Large Economies

    Get PDF
    We analyze competitive pressures in a sequence of auctions with a growing number of bidders, in a model that includes private and common valuations as special cases. We show that the key determinant of bidders' surplus (and implicitly auction revenue) is how the goods are distributed. In any setting and sequence of auctions where the allocation of good(s) is concentrated among a shrinking proportion of the population, the winning bidders enjoy no surplus in the limit. If instead the good(s) are allocated in a dispersed manner so that a non- vanishing proportion of the bidders obtain objects, then in any of a wide class of auctions bidders enjoy a surplus that is bounded away from zero. Moreover, under dispersed allocations, the format of the auction matters. If bidders have constant marginal utilities for objects up to some limit, then uniform price auctions lead to higher revenue than discriminatory auctions. If agents have decreasing marginal utilities for objects, then uniform price auctions are asymptotically efficient, while discriminatory auctions are asymptotically {\sl in}efficient. Finally, we show that in some cases where dispersed allocations are efficient, revenue may increase by bundling goods at the expense of efficiency.Auction, Competition, Mechanism, Asymptotic Efficiency, Revenue Equivalence
    • …
    corecore